Yuchen He, Jingjing Wu, Wenyu Wang, Bin Jiang, Yanxia Zhang
Abstract Blue horizontal-branch stars (BHBs) are ideal tracers for studying the Milky Way (MW) due to their bright and nearly constant magnitude. However, an incomplete screen of BHBs from a survey would result in bias of estimation of the structure or mass of the MW. With surveys of large sky telescopes like the Sloan Digital Sky Survey (SDSS), it is possible to obtain a complete sample. Thus, detecting BHBs from massive photometric images quickly and effectually is necessary. The current acquisition methods of BHBs are mainly based on manual or semi-automatic modes. Therefore, novel approaches are required to replace manual or traditional machine-learning detection. The mainstream deep-learning-based object-detection methods are often vanilla convolutional neural networks whose ability to extract global features is limited by the receptive field of the convolution operator. Recently, a new Transformer-based method has benefited from the global receptive field advantage brought by the self-attention mechanism, exceeded the vanilla convolution model in many tasks, and achieved excellent results. Therefore, this paper proposes a hybrid convolution and Transformer model called AstroYOLO to take advantage of the convolution in local feature representation and Transformer’s easier discovery of long-distance feature dependences. We conduct a comparative experiment on the 4799 SDSS DR16 photometric image dataset. The experimental results show that our model achieves 99.25% AP@50, 93.79% AP@75, and 64.45% AP@95 on the test dataset, outperforming the YOLOv3 and YOLOv4 object-detection models. In addition, we test on larger cutout images based on the same resolution. Our model can reach 99.02% AP@50, 92.00% AP@75, and 61.96% AP@95 respectively, still better than YOLOv3 and YOLOv4. These results also suggest that an appropriate size for cutout images is necessary for the performance and computation of object detection. Compared with the previous models, our model has achieved satisfactory object-detection results and can effectively improve the accuracy of BHB detection.
{"title":"AstroYOLO: A hybrid CNN–Transformer deep-learning object-detection model for blue horizontal-branch stars","authors":"Yuchen He, Jingjing Wu, Wenyu Wang, Bin Jiang, Yanxia Zhang","doi":"10.1093/pasj/psad071","DOIUrl":"https://doi.org/10.1093/pasj/psad071","url":null,"abstract":"Abstract Blue horizontal-branch stars (BHBs) are ideal tracers for studying the Milky Way (MW) due to their bright and nearly constant magnitude. However, an incomplete screen of BHBs from a survey would result in bias of estimation of the structure or mass of the MW. With surveys of large sky telescopes like the Sloan Digital Sky Survey (SDSS), it is possible to obtain a complete sample. Thus, detecting BHBs from massive photometric images quickly and effectually is necessary. The current acquisition methods of BHBs are mainly based on manual or semi-automatic modes. Therefore, novel approaches are required to replace manual or traditional machine-learning detection. The mainstream deep-learning-based object-detection methods are often vanilla convolutional neural networks whose ability to extract global features is limited by the receptive field of the convolution operator. Recently, a new Transformer-based method has benefited from the global receptive field advantage brought by the self-attention mechanism, exceeded the vanilla convolution model in many tasks, and achieved excellent results. Therefore, this paper proposes a hybrid convolution and Transformer model called AstroYOLO to take advantage of the convolution in local feature representation and Transformer’s easier discovery of long-distance feature dependences. We conduct a comparative experiment on the 4799 SDSS DR16 photometric image dataset. The experimental results show that our model achieves 99.25% AP@50, 93.79% AP@75, and 64.45% AP@95 on the test dataset, outperforming the YOLOv3 and YOLOv4 object-detection models. In addition, we test on larger cutout images based on the same resolution. Our model can reach 99.02% AP@50, 92.00% AP@75, and 61.96% AP@95 respectively, still better than YOLOv3 and YOLOv4. These results also suggest that an appropriate size for cutout images is necessary for the performance and computation of object detection. Compared with the previous models, our model has achieved satisfactory object-detection results and can effectively improve the accuracy of BHB detection.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136316801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Galactic winds play a crucial role in the ejection of the interstellar medium (ISM) into intergalactic space. This study presents a model that classifies possible transonic solutions of galactic winds in the gravitational potential of the dark matter halo and stellar component under spherically symmetric and steady assumptions. Our model includes injections of mass and energy resulting from supernova feedback along a flow line. The mass flux in galactic winds is a critical factor in determining the acceleration process of the flow and revealing the impact of galactic winds on galaxy evolution. We apply the transonic galactic wind model to the observed outflow velocities of star-forming galaxies to estimate the mass flux. Dividing the mass flux by the star formation rate (SFR) yields the mass loading rate (and mass loading factor), which indicates the entrainment effect of the ISM by the hot gas flow. Our results demonstrate that the mass loading rate is inversely correlated with galaxy mass and SFR. In less massive galaxies (stellar mass ∼107−8 M⊙), the mass loading rate exceeds unity, indicating effective ejection of the ISM into intergalactic space. However, in massive galaxies (stellar mass ∼1010−11 M⊙), the mass loading rate falls below unity, meaning that the mass flux cannot exceed the injected mass by supernovae, thus resulting in ineffective ejection of the ISM.
{"title":"Transonic galactic wind model including stellar feedbacks and application to outflows in high/low-<i>z</i> galaxies","authors":"Asuka Igarashi, Masao Mori, Shin-ya Nitta","doi":"10.1093/pasj/psad065","DOIUrl":"https://doi.org/10.1093/pasj/psad065","url":null,"abstract":"Abstract Galactic winds play a crucial role in the ejection of the interstellar medium (ISM) into intergalactic space. This study presents a model that classifies possible transonic solutions of galactic winds in the gravitational potential of the dark matter halo and stellar component under spherically symmetric and steady assumptions. Our model includes injections of mass and energy resulting from supernova feedback along a flow line. The mass flux in galactic winds is a critical factor in determining the acceleration process of the flow and revealing the impact of galactic winds on galaxy evolution. We apply the transonic galactic wind model to the observed outflow velocities of star-forming galaxies to estimate the mass flux. Dividing the mass flux by the star formation rate (SFR) yields the mass loading rate (and mass loading factor), which indicates the entrainment effect of the ISM by the hot gas flow. Our results demonstrate that the mass loading rate is inversely correlated with galaxy mass and SFR. In less massive galaxies (stellar mass ∼107−8 M⊙), the mass loading rate exceeds unity, indicating effective ejection of the ISM into intergalactic space. However, in massive galaxies (stellar mass ∼1010−11 M⊙), the mass loading rate falls below unity, meaning that the mass flux cannot exceed the injected mass by supernovae, thus resulting in ineffective ejection of the ISM.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135618427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon-enhanced metal-poor (CEMP) stars in the Galactic halo have a wide range of neutron-capture element abundance patterns. To identify their origin, we investigated three modes of $s$-process nucleosynthesis that have been proposed to operate in extremely metal-poor (EMP) Asymptotic Giant Branch (AGB) stars: the convective 13C burning, which occurs when hydrogen is engulfed by the helium flash convection in low-mass AGB stars, the convective 22Ne burning, which occurs in the helium flash convection of intermediate-mass AGB stars, and the radiative 13C burning, which occurs in the $^{13}$C pocket that is formed during the inter-pulse periods. We show that the production of $s$-process elements per iron seed ($s$-process efficiency) does not depend on metallicity below $[{rm Fe}/{rm H}]=-2$, because 16O in the helium zone dominates the neutron poison. The convective 13C mode can produce a variety of $s$-process efficiencies for Sr, Ba and Pb, including the maxima observed among CEMP stars. The 22Ne mode only produce the lowest end of $s$-process efficiencies among CEMP models. We show that the combination of these two modes can explain the full range of observed enrichment of $s$-process elements in CEMP stars. In contrast, the 13C pocket mode can hardly explain the high level of enrichment observed in some CEMP stars, even if considering star-to-star variations of the mass of the 13C pocket. These results provide a basis for discussing the binary mass transfer origin of CEMP stars and their subgroups.
{"title":"A comparative study of three modes of <i>s</i>-process nucleosynthesis in extremely metal-poor AGB stars","authors":"Shimako Yamada, Takuma Suda, Yutaka Komiya, Masayuki Aikawa, Masayuki Y Fujimoto","doi":"10.1093/pasj/psad062","DOIUrl":"https://doi.org/10.1093/pasj/psad062","url":null,"abstract":"Carbon-enhanced metal-poor (CEMP) stars in the Galactic halo have a wide range of neutron-capture element abundance patterns. To identify their origin, we investigated three modes of $s$-process nucleosynthesis that have been proposed to operate in extremely metal-poor (EMP) Asymptotic Giant Branch (AGB) stars: the convective 13C burning, which occurs when hydrogen is engulfed by the helium flash convection in low-mass AGB stars, the convective 22Ne burning, which occurs in the helium flash convection of intermediate-mass AGB stars, and the radiative 13C burning, which occurs in the $^{13}$C pocket that is formed during the inter-pulse periods. We show that the production of $s$-process elements per iron seed ($s$-process efficiency) does not depend on metallicity below $[{rm Fe}/{rm H}]=-2$, because 16O in the helium zone dominates the neutron poison. The convective 13C mode can produce a variety of $s$-process efficiencies for Sr, Ba and Pb, including the maxima observed among CEMP stars. The 22Ne mode only produce the lowest end of $s$-process efficiencies among CEMP models. We show that the combination of these two modes can explain the full range of observed enrichment of $s$-process elements in CEMP stars. In contrast, the 13C pocket mode can hardly explain the high level of enrichment observed in some CEMP stars, even if considering star-to-star variations of the mass of the 13C pocket. These results provide a basis for discussing the binary mass transfer origin of CEMP stars and their subgroups.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135824264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The results of a Suzaku observation of the supernova remnant (SNR) Kesteven 69 = G21.8−0.6 are presented. To estimate the sky background precisely, we conducted a simultaneous fit of the source region spectrum with the background region spectrum and found that the SNR spectrum is well represented by a two-component ionizing plasma model composed of a low-temperature plasma at kTe = 0.80 ± 0.11 keV and a high-temperature plasma at kTe = 1.5 ± 0.4 keV. The existence of a low-ionized Fe K line at 6.49 ± 0.07 keV was confirmed. The center energy of the line is consistent with those of type Ia SNRs.
{"title":"Spectral analysis of the Galactic supernova remnant Kesteven 69 with Suzaku","authors":"Shigeo Yamauchi, Thomas G Pannuti","doi":"10.1093/pasj/psad068","DOIUrl":"https://doi.org/10.1093/pasj/psad068","url":null,"abstract":"Abstract The results of a Suzaku observation of the supernova remnant (SNR) Kesteven 69 = G21.8−0.6 are presented. To estimate the sky background precisely, we conducted a simultaneous fit of the source region spectrum with the background region spectrum and found that the SNR spectrum is well represented by a two-component ionizing plasma model composed of a low-temperature plasma at kTe = 0.80 ± 0.11 keV and a high-temperature plasma at kTe = 1.5 ± 0.4 keV. The existence of a low-ionized Fe K line at 6.49 ± 0.07 keV was confirmed. The center energy of the line is consistent with those of type Ia SNRs.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Sedik, Abdelrazek M K Shaltout, Yuanyong Deng, Kiyoshi Ichimoto
Abstract We analyze the magnetism of the quiet Sun internetwork (IN) using high-spatial-resolution data obtained by the spectropolarimeter (SP) of the Solar Optical Telescope aboard the Hinode satellite near the disk center of the Sun. The SP data were inverted using the Stokes Inversion based on Response functions (SIR) inversion code with a single-component atmosphere with depth dependent in the solar photosphere, assuming gradients in physical parameters along the line of sight (LOS). To avoid the effect of noise, only pixels with Stokes U and/or Q signals above 4.5 times the noise level are considered. The inversion results show that the magnetic field of the IN has mainly hG field strength and the inclination distribution is quasi-isotropic at the solar surface. The field strength decreases with height and becomes predominantly horizontal at the upper layers. At the mid photosphere, the distributions of field strength and inclination are consistent with those derived by Milne–Eddington inversion. The mean transverse and longitudinal flux densities are 66 Mx cm−2 and 13 Mx cm−2 at log τ = −1.0; we also study the ratio between the transverse and longitudinal components in the IN region as a function of depth in the photosphere, finding that the ratio is almost 2.7 in the deep layer, increasing to 5.1 in the upper layer. The mean field strength is greater than 100 G in the upper photosphere, which is consistent with the results based on the Hanle effect. We present the LOS velocity probability distribution function for IN at different optical depths, where its distribution is mainly associated with upflow velocities of VLOS = 1.2 and 0.6 km s−1 in the deeper and upper layers, respectively. In addition, there exists a reliable inversion analysis, which is obvious from the comparison between the observed and calculated area asymmetries in both Fe i lines of Hinode SP data.
{"title":"Investigating the magnetic field of the quiet Sun internetwork","authors":"Mohamed Sedik, Abdelrazek M K Shaltout, Yuanyong Deng, Kiyoshi Ichimoto","doi":"10.1093/pasj/psad067","DOIUrl":"https://doi.org/10.1093/pasj/psad067","url":null,"abstract":"Abstract We analyze the magnetism of the quiet Sun internetwork (IN) using high-spatial-resolution data obtained by the spectropolarimeter (SP) of the Solar Optical Telescope aboard the Hinode satellite near the disk center of the Sun. The SP data were inverted using the Stokes Inversion based on Response functions (SIR) inversion code with a single-component atmosphere with depth dependent in the solar photosphere, assuming gradients in physical parameters along the line of sight (LOS). To avoid the effect of noise, only pixels with Stokes U and/or Q signals above 4.5 times the noise level are considered. The inversion results show that the magnetic field of the IN has mainly hG field strength and the inclination distribution is quasi-isotropic at the solar surface. The field strength decreases with height and becomes predominantly horizontal at the upper layers. At the mid photosphere, the distributions of field strength and inclination are consistent with those derived by Milne–Eddington inversion. The mean transverse and longitudinal flux densities are 66 Mx cm−2 and 13 Mx cm−2 at log τ = −1.0; we also study the ratio between the transverse and longitudinal components in the IN region as a function of depth in the photosphere, finding that the ratio is almost 2.7 in the deep layer, increasing to 5.1 in the upper layer. The mean field strength is greater than 100 G in the upper photosphere, which is consistent with the results based on the Hanle effect. We present the LOS velocity probability distribution function for IN at different optical depths, where its distribution is mainly associated with upflow velocities of VLOS = 1.2 and 0.6 km s−1 in the deeper and upper layers, respectively. In addition, there exists a reliable inversion analysis, which is obvious from the comparison between the observed and calculated area asymmetries in both Fe i lines of Hinode SP data.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135689971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hiroshi Imai, Yuhki Hamae, Kei Amada, Keisuke Nakashima, Ka-Yiu Shum, Rina Kasai, José F Gómez, Lucero Uscanga, Daniel Tafoya, Gabor Orosz, Ross A Burns
Abstract This paper describes an overview of the FLASHING (Finest Legacy Acquisitions of SiO-/H2O-maser Ignitions by the Nobeyama Generation) project promoted using the 45 m telescope of Nobeyama Radio Observatory, which aims to intensively monitor H2O (at 22 GHz) and SiO (at 43 GHz) masers associated with so-called “water fountain” sources. Here we show scientific results based on the data taken in the first five seasons of FLASHING, from 2018 December to 2023 April. We show the evolution of the H2O maser spectra, discovering new spectral components that break the record of the jet’s top speed and/or systematic velocity drifts in the spectrum indicating acceleration or deceleration of the maser gas clumps. For the 43 GHz SiO maser emission, we newly detect it in one source and find that it is no longer present in another source. This implies that the jets from these water fountains can be accelerated or decelerated, and show how circumstellar envelopes are destroyed.
摘要:本文概述了利用Nobeyama射电天文台45米望远镜推进的闪光灯(Nobeyama Generation of SiO-/H2O脉泽点火的最佳遗留收购)项目,该项目旨在集中监测H2O (22 GHz)和SiO (43 GHz)脉泽,这些脉泽与所谓的“喷泉”源有关。在这里,我们展示了基于flash前五个季节(2018年12月至2023年4月)数据的科学结果。我们展示了H2O脉泽光谱的演变,发现了新的光谱成分,这些成分打破了射流的最高速度和/或光谱中系统速度漂移的记录,表明了脉泽气体团块的加速或减速。对于43 GHz SiO脉泽发射,我们在一个源中新检测到它,发现它在另一个源中不再存在。这意味着这些喷泉的射流可以加速或减速,并显示了星周包层是如何被破坏的。
{"title":"FLASHING: Project overview","authors":"Hiroshi Imai, Yuhki Hamae, Kei Amada, Keisuke Nakashima, Ka-Yiu Shum, Rina Kasai, José F Gómez, Lucero Uscanga, Daniel Tafoya, Gabor Orosz, Ross A Burns","doi":"10.1093/pasj/psad064","DOIUrl":"https://doi.org/10.1093/pasj/psad064","url":null,"abstract":"Abstract This paper describes an overview of the FLASHING (Finest Legacy Acquisitions of SiO-/H2O-maser Ignitions by the Nobeyama Generation) project promoted using the 45 m telescope of Nobeyama Radio Observatory, which aims to intensively monitor H2O (at 22 GHz) and SiO (at 43 GHz) masers associated with so-called “water fountain” sources. Here we show scientific results based on the data taken in the first five seasons of FLASHING, from 2018 December to 2023 April. We show the evolution of the H2O maser spectra, discovering new spectral components that break the record of the jet’s top speed and/or systematic velocity drifts in the spectrum indicating acceleration or deceleration of the maser gas clumps. For the 43 GHz SiO maser emission, we newly detect it in one source and find that it is no longer present in another source. This implies that the jets from these water fountains can be accelerated or decelerated, and show how circumstellar envelopes are destroyed.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135696069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract One of the key questions on active galactic nuclei (AGN) in galaxy clusters is how AGN could affect the formation and evolution of member galaxies and galaxy clusters in the history of the Universe. To address this issue, we investigate the dependence of AGN number fraction (fAGN) on cluster redshift (zcl) and distance from the cluster center (R$/$R200). We focus on more than 27000 galaxy groups and clusters at 0.1 < zcl < 1.4 with more than 1 million member galaxies selected from the Subaru Hyper Suprime-Cam. By combining various AGN selection methods based on infrared (IR), radio, and X-ray data, we identify 2688 AGN. We find that (i) fAGN increases with zcl and (ii) fAGN decreases with R$/$R200. The main contributors to the rapid increase of fAGN towards high-z and cluster center are IR- and radio-selected AGN, respectively. These results indicate that the emergence of the AGN population depends on the environment and redshift, and galaxy groups and clusters at high z play an important role in AGN evolution. We also find that cluster–cluster mergers may not drive AGN activity in at least the cluster center, while we have tentative evidence that cluster–cluster mergers could enhance AGN activity in the outskirts of (particularly massive) galaxy clusters.
{"title":"AGN number fraction in galaxy groups and clusters at <i>z</i> &lt; 1.4 from the Subaru Hyper Suprime-Cam survey","authors":"Aoi Hashiguchi, Yoshiki Toba, Naomi Ota, Masamune Oguri, Nobuhiro Okabe, Yoshihiro Ueda, Masatoshi Imanishi, Satoshi Yamada, Tomotsugu Goto, Shuhei Koyama, Kianhong Lee, Ikuyuki Mitsuishi, Tohru Nagao, Atsushi J Nishizawa, Akatoki Noboriguchi, Taira Oogi, Koki Sakuta, Malte Schramm, Mio Shibata, Yuichi Terashima, Takuji Yamashita, Anri Yanagawa, Anje Yoshimoto","doi":"10.1093/pasj/psad066","DOIUrl":"https://doi.org/10.1093/pasj/psad066","url":null,"abstract":"Abstract One of the key questions on active galactic nuclei (AGN) in galaxy clusters is how AGN could affect the formation and evolution of member galaxies and galaxy clusters in the history of the Universe. To address this issue, we investigate the dependence of AGN number fraction (fAGN) on cluster redshift (zcl) and distance from the cluster center (R$/$R200). We focus on more than 27000 galaxy groups and clusters at 0.1 &lt; zcl &lt; 1.4 with more than 1 million member galaxies selected from the Subaru Hyper Suprime-Cam. By combining various AGN selection methods based on infrared (IR), radio, and X-ray data, we identify 2688 AGN. We find that (i) fAGN increases with zcl and (ii) fAGN decreases with R$/$R200. The main contributors to the rapid increase of fAGN towards high-z and cluster center are IR- and radio-selected AGN, respectively. These results indicate that the emergence of the AGN population depends on the environment and redshift, and galaxy groups and clusters at high z play an important role in AGN evolution. We also find that cluster–cluster mergers may not drive AGN activity in at least the cluster center, while we have tentative evidence that cluster–cluster mergers could enhance AGN activity in the outskirts of (particularly massive) galaxy clusters.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135133417","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Large solar flares occasionally trigger significant space-weather disturbances that affect the technological infrastructures of modern civilization, and therefore require further investigation. Although these solar flares have been monitored by satellite observations since the 1970s, large solar flares occur only infrequently and restrict systematic statistical research owing to data limitations. However, Toyokawa Observatory has operated solar radio observations at low frequencies (at 3.75 and 9.4 GHz) since 1951 and captured the early great flares as solar radio bursts. To estimate the magnitudes of flares that occurred before the start of solar X-ray (SXR) observations with the Geostationary Operational Environmental Satellite (GOES) satellites, we show the relationship between microwave fluxes at 3.75 and 9.4 GHz and X-ray fluxes of flares that occurred after 1988. In total, we explored 341 solar flares observed with the Nobeyama Radio Polarimeters and Toyokawa Observatory from 1988–2014 and compared them with the SXR observations recorded by the GOES satellites. The correlation coefficient was approximately 0.7. Therefore, the GOES X-ray class can be estimated from the peak flux at 3.75 and 9.4 GHz with a large variance and an error of factor of 3 (1σ). Thus, for the first time, we quantitatively estimated the light curves of two early solar flares observed in 1956 February by the Toyokawa solar radio observations using the relationship between SXR thermal radiation and microwave nonthermal radiation (Neupert, 1968, ApJ, 153, 59).
{"title":"Relationship of peak fluxes of solar radio bursts and X-ray class of solar flares: Application to early great solar flares","authors":"Keitarou Matsumoto, Satoshi Masuda, Masumi Shimojo, Hisashi Hayakawa","doi":"10.1093/pasj/psad058","DOIUrl":"https://doi.org/10.1093/pasj/psad058","url":null,"abstract":"Abstract Large solar flares occasionally trigger significant space-weather disturbances that affect the technological infrastructures of modern civilization, and therefore require further investigation. Although these solar flares have been monitored by satellite observations since the 1970s, large solar flares occur only infrequently and restrict systematic statistical research owing to data limitations. However, Toyokawa Observatory has operated solar radio observations at low frequencies (at 3.75 and 9.4 GHz) since 1951 and captured the early great flares as solar radio bursts. To estimate the magnitudes of flares that occurred before the start of solar X-ray (SXR) observations with the Geostationary Operational Environmental Satellite (GOES) satellites, we show the relationship between microwave fluxes at 3.75 and 9.4 GHz and X-ray fluxes of flares that occurred after 1988. In total, we explored 341 solar flares observed with the Nobeyama Radio Polarimeters and Toyokawa Observatory from 1988–2014 and compared them with the SXR observations recorded by the GOES satellites. The correlation coefficient was approximately 0.7. Therefore, the GOES X-ray class can be estimated from the peak flux at 3.75 and 9.4 GHz with a large variance and an error of factor of 3 (1σ). Thus, for the first time, we quantitatively estimated the light curves of two early solar flares observed in 1956 February by the Toyokawa solar radio observations using the relationship between SXR thermal radiation and microwave nonthermal radiation (Neupert, 1968, ApJ, 153, 59).","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135132304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The main purpose of the present paper is to list all the solar eclipses which took place in the first half of the 15th century, to list all the available records of observation of these eclipses, and, by using the multiply observed or contemporaneously observed solar eclipses, to determine ΔT for a few periods of the first half of the 15th century. We make the table using solar eclipse records from East Asia (China, Korea, and Japan), India, West Asia, and Europe, though the table is not perfect because the compilation of records is not complete in some of the relevant areas. We evaluate the reliability of the Chinese records of solar eclipses. The Chinese official history book, the Mingshi, records visible eclipses, while it does not record invisible eclipses. A simple analysis shows that the reliability of the book is $97%$. The marginally observable eclipses in China are useful for us to determine ΔT. We briefly consider the Māori eclipse observed in 1409. We extract the multiply observed eclipses and check whether these are useful for determining the value of ΔT. Finally, with newly added records of solar eclipses, we re-determine the value range of ΔT during the years 1431–1433 (see Tanikawa et al. 2019, in Proc. 5th Symposium on Historical Astronomical Records and Modern Science), and add a new ΔT in the year 1445.
本文的主要目的是列出15世纪上半叶发生的所有日食,列出所有可获得的日食观测记录,并利用多次观测或同时观测的日食来确定15世纪上半叶的几个时期的ΔT。我们使用东亚(中国、韩国和日本)、印度、西亚和欧洲的日食记录制作了这个表,尽管由于一些相关地区的记录汇编不完整,这个表并不完善。我们评估了中国日食记录的可靠性。中国的官方史书《明史》记载了可见的日食,而没有记载不可见的日食。简单的分析表明,这本书的可靠性为97%。在中国边际观测到的日食对我们确定ΔT很有用。我们简单地考虑一下1409年观测到的Māori日食。我们提取多次观测到的日食,并检查它们是否有助于确定ΔT的值。最后,通过新增加的日食记录,我们重新确定了ΔT在1431-1433年间的值范围(见Tanikawa et al. 2019, Proc. 5th Symposium on Historical Astronomical records and Modern Science),并在1445年增加了一个新的ΔT。
{"title":"Solar eclipses observed worldwide in the first half of the 15th century and Δ<i>T</i> determined from multiply observed eclipses","authors":"Kiyotaka Tanikawa, Mitsuru Sôma, Ockie Simmonds, Kiyomi Iwahashi","doi":"10.1093/pasj/psad036","DOIUrl":"https://doi.org/10.1093/pasj/psad036","url":null,"abstract":"Abstract The main purpose of the present paper is to list all the solar eclipses which took place in the first half of the 15th century, to list all the available records of observation of these eclipses, and, by using the multiply observed or contemporaneously observed solar eclipses, to determine ΔT for a few periods of the first half of the 15th century. We make the table using solar eclipse records from East Asia (China, Korea, and Japan), India, West Asia, and Europe, though the table is not perfect because the compilation of records is not complete in some of the relevant areas. We evaluate the reliability of the Chinese records of solar eclipses. The Chinese official history book, the Mingshi, records visible eclipses, while it does not record invisible eclipses. A simple analysis shows that the reliability of the book is $97%$. The marginally observable eclipses in China are useful for us to determine ΔT. We briefly consider the Māori eclipse observed in 1409. We extract the multiply observed eclipses and check whether these are useful for determining the value of ΔT. Finally, with newly added records of solar eclipses, we re-determine the value range of ΔT during the years 1431–1433 (see Tanikawa et al. 2019, in Proc. 5th Symposium on Historical Astronomical Records and Modern Science), and add a new ΔT in the year 1445.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134886878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract We present the first results from GALAXY CRUISE, a community (or citizen) science project based on data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The current paradigm of galaxy evolution suggests that galaxies grow hierarchically via mergers, but our observational understanding of the role of mergers is still limited. The data from HSC-SSP are ideally suited to improve our understanding with improved identifications of interacting galaxies thanks to the superb depth and image quality of HSC-SSP. We launched a community science project, GALAXY CRUISE, in 2019 and have collected over two million independent classifications of 20686 galaxies at z < 0.2. We first characterize the accuracy of the participants’ classifications and demonstrate that it surpasses previous studies based on shallower imaging data. We then investigate various aspects of interacting galaxies in detail. We show that there is a clear sign of enhanced activities of super-massive black holes and star formation in interacting galaxies compared to those in isolated galaxies. The enhancement seems particularly strong for galaxies undergoing violent mergers. We also show that the mass growth rate inferred from our results is roughly consistent with the observed evolution of the stellar mass function. The second season of GALAXY CRUISE is currently underway and we conclude with future prospects. We make the morphological classification catalog used in this paper publicly available at the GALAXY CRUISE website, which will be particularly useful for machine-learning applications.
{"title":"Galaxy Cruise: Deep Insights into Interacting Galaxies in the Local Universe","authors":"Masayuki Tanaka, Michitaro Koike, Sei’ichiro Naito, Junko Shibata, Kumiko Usuda-Sato, Hitoshi Yamaoka, Makoto Ando, Kei Ito, Umi Kobayashi, Yutaro Kofuji, Atsuki Kuwata, Suzuka Nakano, Rhythm Shimakawa, Ken-ichi Tadaki, Suguru Takebayashi, Chie Tsuchiya, Tomofumi Umemoto, Connor Bottrell","doi":"10.1093/pasj/psad055","DOIUrl":"https://doi.org/10.1093/pasj/psad055","url":null,"abstract":"Abstract We present the first results from GALAXY CRUISE, a community (or citizen) science project based on data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). The current paradigm of galaxy evolution suggests that galaxies grow hierarchically via mergers, but our observational understanding of the role of mergers is still limited. The data from HSC-SSP are ideally suited to improve our understanding with improved identifications of interacting galaxies thanks to the superb depth and image quality of HSC-SSP. We launched a community science project, GALAXY CRUISE, in 2019 and have collected over two million independent classifications of 20686 galaxies at z &lt; 0.2. We first characterize the accuracy of the participants’ classifications and demonstrate that it surpasses previous studies based on shallower imaging data. We then investigate various aspects of interacting galaxies in detail. We show that there is a clear sign of enhanced activities of super-massive black holes and star formation in interacting galaxies compared to those in isolated galaxies. The enhancement seems particularly strong for galaxies undergoing violent mergers. We also show that the mass growth rate inferred from our results is roughly consistent with the observed evolution of the stellar mass function. The second season of GALAXY CRUISE is currently underway and we conclude with future prospects. We make the morphological classification catalog used in this paper publicly available at the GALAXY CRUISE website, which will be particularly useful for machine-learning applications.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135719023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}