Pub Date : 2025-11-17DOI: 10.22331/q-2025-11-17-1913
Robert Lin
In this work, we develop a graphical calculus for multi-qudit computations with generalized Clifford algebras, building off the algebraic framework developed in our prior work. We build our graphical calculus out of a fixed set of graphical primitives defined by algebraic expressions constructed out of elements of a given generalized Clifford algebra, a graphical primitive corresponding to the ground state, and also graphical primitives corresponding to projections onto the ground state of each qudit. We establish many properties of the graphical calculus using purely algebraic methods, including a novel algebraic proof of a Yang-Baxter equation and a construction of a corresponding braid group representation. Our algebraic proof, which applies to arbitrary qudit dimension, also enables a resolution of an open problem of Cobanera and Ortiz on the construction of self-dual braid group representations for even qudit dimension. We also derive several new identities for the braid elements, which are key to our proofs. Furthermore, we demonstrate that in many cases, the verification of involved vector identities can be reduced to the combinatorial application of two basic vector identities. Additionally, in terms of quantum computation, we demonstrate that it is feasible to envision implementing the braid operators for quantum computation, by showing that they are 2-local operators. In fact, these braid elements are almost Clifford gates, for they normalize the generalized Pauli group up to an extra factor $zeta$, which is an appropriate square root of a primitive root of unity.
{"title":"A Graphical Calculus for Quantum Computing with Multiple Qudits using Generalized Clifford Algebras","authors":"Robert Lin","doi":"10.22331/q-2025-11-17-1913","DOIUrl":"https://doi.org/10.22331/q-2025-11-17-1913","url":null,"abstract":"In this work, we develop a graphical calculus for multi-qudit computations with generalized Clifford algebras, building off the algebraic framework developed in our prior work. We build our graphical calculus out of a fixed set of graphical primitives defined by algebraic expressions constructed out of elements of a given generalized Clifford algebra, a graphical primitive corresponding to the ground state, and also graphical primitives corresponding to projections onto the ground state of each qudit. We establish many properties of the graphical calculus using purely algebraic methods, including a novel algebraic proof of a Yang-Baxter equation and a construction of a corresponding braid group representation. Our algebraic proof, which applies to arbitrary qudit dimension, also enables a resolution of an open problem of Cobanera and Ortiz on the construction of self-dual braid group representations for even qudit dimension. We also derive several new identities for the braid elements, which are key to our proofs. Furthermore, we demonstrate that in many cases, the verification of involved vector identities can be reduced to the combinatorial application of two basic vector identities. Additionally, in terms of quantum computation, we demonstrate that it is feasible to envision implementing the braid operators for quantum computation, by showing that they are 2-local operators. In fact, these braid elements are almost Clifford gates, for they normalize the generalized Pauli group up to an extra factor $zeta$, which is an appropriate square root of a primitive root of unity.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"120 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145535911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-17DOI: 10.22331/q-2025-11-17-1914
Daniel McNulty, Susane Calegari, Michał Oszmaniec
An important class of fermionic observables, relevant in tasks such as fermionic partial tomography and estimating energy levels of chemical Hamiltonians, are the binary measurements obtained from the product of anti-commuting Majorana operators. In this work, we investigate efficient estimation strategies of these observables based on a joint measurement which, after classical post-processing, yields all sufficiently unsharp (noisy) Majorana observables of even-degree. By exploiting the symmetry properties of the Majorana observables, as described by the braid group, we show that the incompatibility robustness, i.e., the minimal classical noise necessary for joint measurability, relates to the spectral properties of the Sachdev-Ye-Kitaev (SYK) model. In particular, we show that for an $n$ mode fermionic system, the incompatibility robustness of all degree-$2k$ Majorana observables satisfies $Theta(n^{-k/2})$ for $kleq 5$. Furthermore, we present a joint measurement scheme achieving the asymptotically optimal noise, implemented by a small number of fermionic Gaussian unitaries and sampling from the set of all Majorana monomials. Our joint measurement, which can be performed via a randomization over projective measurements, provides rigorous performance guarantees for estimating fermionic observables comparable with fermionic classical shadows.
{"title":"Optimal Fermionic Joint Measurements for Estimating Non-Commuting Majorana Observables","authors":"Daniel McNulty, Susane Calegari, Michał Oszmaniec","doi":"10.22331/q-2025-11-17-1914","DOIUrl":"https://doi.org/10.22331/q-2025-11-17-1914","url":null,"abstract":"An important class of fermionic observables, relevant in tasks such as fermionic partial tomography and estimating energy levels of chemical Hamiltonians, are the binary measurements obtained from the product of anti-commuting Majorana operators. In this work, we investigate efficient estimation strategies of these observables based on a joint measurement which, after classical post-processing, yields all sufficiently unsharp (noisy) Majorana observables of even-degree. By exploiting the symmetry properties of the Majorana observables, as described by the braid group, we show that the incompatibility robustness, i.e., the minimal classical noise necessary for joint measurability, relates to the spectral properties of the Sachdev-Ye-Kitaev (SYK) model. In particular, we show that for an $n$ mode fermionic system, the incompatibility robustness of all degree-$2k$ Majorana observables satisfies $Theta(n^{-k/2})$ for $kleq 5$. Furthermore, we present a joint measurement scheme achieving the asymptotically optimal noise, implemented by a small number of fermionic Gaussian unitaries and sampling from the set of all Majorana monomials. Our joint measurement, which can be performed via a randomization over projective measurements, provides rigorous performance guarantees for estimating fermionic observables comparable with fermionic classical shadows.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"178 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145535912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-17DOI: 10.22331/q-2025-11-17-1915
Samo Novák, David D. Roberts, Alexander Makarovskiy, Raúl García-Patrón, William R. Clements
Loop-based boson samplers interfere photons in the time degree of freedom using a sequence of delay lines. Since they require few hardware components while also allowing for long-range entanglement, they are strong candidates for demonstrating quantum advantage beyond the reach of classical emulation. We propose a method to exploit this loop-based structure to more efficiently classically sample from such systems. Our algorithm exploits a causal-cone argument to decompose the circuit into smaller effective components that can each be simulated sequentially by calling a state vector simulator as a subroutine. To quantify the complexity of our approach, we develop a new lattice path formalism that allows us to efficiently characterize the state space that must be tracked during the simulation. In addition, we develop a heuristic method that allows us to predict the expected average and worst-case memory requirements of running these simulations. We use these methods to compare the simulation complexity of different families of loop-based interferometers, allowing us to quantify the potential for quantum advantage of single-photon Boson Sampling in loop-based architectures.
{"title":"Boundaries for quantum advantage with single photons and loop-based time-bin interferometers","authors":"Samo Novák, David D. Roberts, Alexander Makarovskiy, Raúl García-Patrón, William R. Clements","doi":"10.22331/q-2025-11-17-1915","DOIUrl":"https://doi.org/10.22331/q-2025-11-17-1915","url":null,"abstract":"Loop-based boson samplers interfere photons in the time degree of freedom using a sequence of delay lines. Since they require few hardware components while also allowing for long-range entanglement, they are strong candidates for demonstrating quantum advantage beyond the reach of classical emulation. We propose a method to exploit this loop-based structure to more efficiently classically sample from such systems. Our algorithm exploits a causal-cone argument to decompose the circuit into smaller effective components that can each be simulated sequentially by calling a state vector simulator as a subroutine. To quantify the complexity of our approach, we develop a new lattice path formalism that allows us to efficiently characterize the state space that must be tracked during the simulation. In addition, we develop a heuristic method that allows us to predict the expected average and worst-case memory requirements of running these simulations. We use these methods to compare the simulation complexity of different families of loop-based interferometers, allowing us to quantify the potential for quantum advantage of single-photon Boson Sampling in loop-based architectures.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"174 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145535913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-17DOI: 10.22331/q-2025-11-17-1911
Aniruddha Sen, Kenneth Goodenough, Don Towsley
Quantum networks are important for quantum communication, enabling tasks such as quantum teleportation, quantum key distribution, quantum sensing, and quantum error correction, often utilizing graph states, a specific class of multipartite entangled states that can be represented by graphs. We propose a novel approach for distributing graph states across a quantum network. We show that the distribution of graph states can be characterized by a system of subgraph complementations, which we also relate to the minimum rank of the underlying graph and the degree of entanglement quantified by the Schmidt-rank of the quantum state. We analyze resource usage for our algorithm and show that it improves on the number of qubits, bits for classical communication, and EPR pairs utilized, as compared to prior work. In fact, the number of local operations and resource consumption for our approach scales linearly in the number of vertices. This produces a quadratic improvement in completion time for several classes of graph states represented by dense graphs, which translates into an exponential improvement by allowing parallelization of gate operations. This leads to improved fidelities in the presence of noisy operations, as we show through simulation in the presence of noisy operations. We classify common classes of graph states, along with their optimal distribution time using subgraph complementations. We find a sequence of subgraph complementation operations to distribute an arbitrary graph state which we conjecture is close to the optimal sequence, and establish upper bounds on distribution time along with providing approximate greedy algorithms.
{"title":"Multipartite Entanglement Distribution in Quantum Networks using Subgraph Complementations","authors":"Aniruddha Sen, Kenneth Goodenough, Don Towsley","doi":"10.22331/q-2025-11-17-1911","DOIUrl":"https://doi.org/10.22331/q-2025-11-17-1911","url":null,"abstract":"Quantum networks are important for quantum communication, enabling tasks such as quantum teleportation, quantum key distribution, quantum sensing, and quantum error correction, often utilizing graph states, a specific class of multipartite entangled states that can be represented by graphs. We propose a novel approach for distributing graph states across a quantum network. We show that the distribution of graph states can be characterized by a system of subgraph complementations, which we also relate to the minimum rank of the underlying graph and the degree of entanglement quantified by the Schmidt-rank of the quantum state. We analyze resource usage for our algorithm and show that it improves on the number of qubits, bits for classical communication, and EPR pairs utilized, as compared to prior work. In fact, the number of local operations and resource consumption for our approach scales linearly in the number of vertices. This produces a quadratic improvement in completion time for several classes of graph states represented by dense graphs, which translates into an exponential improvement by allowing parallelization of gate operations. This leads to improved fidelities in the presence of noisy operations, as we show through simulation in the presence of noisy operations. We classify common classes of graph states, along with their optimal distribution time using subgraph complementations. We find a sequence of subgraph complementation operations to distribute an arbitrary graph state which we conjecture is close to the optimal sequence, and establish upper bounds on distribution time along with providing approximate greedy algorithms.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"13 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145532101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-14DOI: 10.22331/q-2025-11-14-1909
Pegah Mohammadipour, Xiantao Li
Zero-noise extrapolation (ZNE) is a widely used quantum error mitigation technique that artificially amplifies circuit noise and then extrapolates the results to the noise-free circuit. A common ZNE approach is Richardson extrapolation, which relies on polynomial interpolation. Despite its simplicity, efficient implementations of Richardson extrapolation face several challenges, including approximation errors from the non-polynomial behavior of noise channels, overfitting due to polynomial interpolation, and exponentially amplified measurement noise. This paper provides a comprehensive analysis of these challenges, presenting bias and variance bounds that quantify approximation errors. Additionally, for any precision $varepsilon$, our results offer an estimate of the necessary sample complexity. We further extend the analysis to polynomial least squares-based extrapolation, which mitigates measurement noise and avoids overfitting. Finally, we propose a strategy for simultaneously mitigating circuit and algorithmic errors in the Trotter-Suzuki algorithm by jointly scaling the time step size and the noise level. This strategy provides a practical tool to enhance the reliability of near-term quantum computations. We support our theoretical findings with numerical experiments.
{"title":"Direct Analysis of Zero-Noise Extrapolation: Polynomial Methods, Error Bounds, and Simultaneous Physical-Algorithmic Error Mitigation","authors":"Pegah Mohammadipour, Xiantao Li","doi":"10.22331/q-2025-11-14-1909","DOIUrl":"https://doi.org/10.22331/q-2025-11-14-1909","url":null,"abstract":"Zero-noise extrapolation (ZNE) is a widely used quantum error mitigation technique that artificially amplifies circuit noise and then extrapolates the results to the noise-free circuit. A common ZNE approach is Richardson extrapolation, which relies on polynomial interpolation. Despite its simplicity, efficient implementations of Richardson extrapolation face several challenges, including approximation errors from the non-polynomial behavior of noise channels, overfitting due to polynomial interpolation, and exponentially amplified measurement noise. This paper provides a comprehensive analysis of these challenges, presenting bias and variance bounds that quantify approximation errors. Additionally, for any precision $varepsilon$, our results offer an estimate of the necessary sample complexity. We further extend the analysis to polynomial least squares-based extrapolation, which mitigates measurement noise and avoids overfitting. Finally, we propose a strategy for simultaneously mitigating circuit and algorithmic errors in the Trotter-Suzuki algorithm by jointly scaling the time step size and the noise level. This strategy provides a practical tool to enhance the reliability of near-term quantum computations. We support our theoretical findings with numerical experiments.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"39 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-14DOI: 10.22331/q-2025-11-14-1910
Satvik Singh, Mizanur Rahaman, Nilanjana Datta
Consider an open quantum system with (discrete-time) Markovian dynamics. Our task is to store information in the system in such a way that it can be retrieved perfectly, even after the system is left to evolve for an arbitrarily long time. We show that this is impossible for classical (resp. quantum) information precisely when the dynamics is mixing (resp. asymptotically entanglement breaking). Furthermore, we provide tight universal upper bounds on the minimum time after which any such dynamics 'scrambles' the encoded information beyond the point of perfect retrieval. On the other hand, for dynamics that are not of this kind, we show that information must be encoded inside the peripheral space associated with the dynamics in order for it to be perfectly recoverable at any time in the future. This allows us to derive explicit formulas for the maximum amount of information that can be protected from noise in terms of the structure of the peripheral space of the dynamics.
{"title":"Zero-error communication under discrete-time Markovian dynamics","authors":"Satvik Singh, Mizanur Rahaman, Nilanjana Datta","doi":"10.22331/q-2025-11-14-1910","DOIUrl":"https://doi.org/10.22331/q-2025-11-14-1910","url":null,"abstract":"Consider an open quantum system with (discrete-time) Markovian dynamics. Our task is to store information in the system in such a way that it can be retrieved perfectly, even after the system is left to evolve for an arbitrarily long time. We show that this is impossible for classical (resp. quantum) information precisely when the dynamics is mixing (resp. asymptotically entanglement breaking). Furthermore, we provide tight universal upper bounds on the minimum time after which any such dynamics 'scrambles' the encoded information beyond the point of perfect retrieval. On the other hand, for dynamics that are not of this kind, we show that information must be encoded inside the peripheral space associated with the dynamics in order for it to be perfectly recoverable at any time in the future. This allows us to derive explicit formulas for the maximum amount of information that can be protected from noise in terms of the structure of the peripheral space of the dynamics.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"55 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145509280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-06DOI: 10.22331/q-2025-11-06-1904
MohammadJavad Kazemi, Ghadir Jafari
Relaxing the postulates of an axiomatic theory is a natural way to find more general theories, and historically, the discovery of non-Euclidean geometry is a famous example of this procedure. Here, we use this way to extend quantum mechanics by ignoring the $heart$ of Heisenberg's quantum mechanics – We do not assume the existence of a position operator that satisfies the Heisenberg commutation relation, $[hat x,hat p]=ihbar$. The remaining axioms of quantum theory, besides Galilean symmetry, lead to a more general quantum theory with a free parameter $l_0$ of length dimension, such that as $l_0 to 0$ the theory reduces to standard quantum theory. Perhaps surprisingly, this non-Heisenberg quantum theory, without a priori assumption of the non-commutation relation, leads to a modified Heisenberg uncertainty relation, $Delta x Delta pgeq sqrt{hbar^2/4+l_0^2(Delta p)^2}$, which ensures the existence of a minimal position uncertainty, $l_0$, as expected from various quantum gravity studies. By comparing the results of this framework with some observed data, which includes the first longitudinal normal modes of the bar gravitational wave detector AURIGA and the $1S-2S$ transition in the hydrogen atom, we obtain upper bounds on the $l_0$.
放宽公理化理论的假设是发现更一般理论的自然方法,历史上,非欧几里得几何的发现就是这一过程的一个著名例子。在这里,我们使用这种方式来扩展量子力学,忽略海森堡量子力学的$heart$ -我们不假设存在一个满足海森堡交换关系$[hat x,hat p]=ihbar$的位置算子。量子理论的其余公理,除了伽利略对称,导致一个更一般的量子理论与长度维度的自由参数$l_0$,如$l_0 to 0$,该理论减少到标准量子理论。也许令人惊讶的是,这种非海森堡量子理论,没有对非换相关系的先验假设,导致了一个修正的海森堡不确定性关系$Delta x Delta pgeq sqrt{hbar^2/4+l_0^2(Delta p)^2}$,它确保了最小位置不确定性的存在$l_0$,正如各种量子引力研究所期望的那样。通过将该框架的结果与一些观测数据进行比较,包括棒状引力波探测器AURIGA的第一纵向正模和氢原子的$1S-2S$跃迁,我们得到了$l_0$的上界。
{"title":"Non-Heisenbergian quantum mechanics","authors":"MohammadJavad Kazemi, Ghadir Jafari","doi":"10.22331/q-2025-11-06-1904","DOIUrl":"https://doi.org/10.22331/q-2025-11-06-1904","url":null,"abstract":"Relaxing the postulates of an axiomatic theory is a natural way to find more general theories, and historically, the discovery of non-Euclidean geometry is a famous example of this procedure. Here, we use this way to extend quantum mechanics by ignoring the $heart$ of Heisenberg's quantum mechanics – We do not assume the existence of a position operator that satisfies the Heisenberg commutation relation, $[hat x,hat p]=ihbar$. The remaining axioms of quantum theory, besides Galilean symmetry, lead to a more general quantum theory with a free parameter $l_0$ of length dimension, such that as $l_0 to 0$ the theory reduces to standard quantum theory. Perhaps surprisingly, this non-Heisenberg quantum theory, without a priori assumption of the non-commutation relation, leads to a modified Heisenberg uncertainty relation, $Delta x Delta pgeq sqrt{hbar^2/4+l_0^2(Delta p)^2}$, which ensures the existence of a minimal position uncertainty, $l_0$, as expected from various quantum gravity studies. By comparing the results of this framework with some observed data, which includes the first longitudinal normal modes of the bar gravitational wave detector AURIGA and the $1S-2S$ transition in the hydrogen atom, we obtain upper bounds on the $l_0$.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"80 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145448206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-06DOI: 10.22331/q-2025-11-06-1905
Peter-Jan H.S. Derks, Alex Townsend-Teague, Ansgar G. Burchards, Jens Eisert
Quantum error-correcting codes, such as subspace, subsystem, and Floquet codes, are typically constructed within the stabilizer formalism, which does not fully capture the idea of fault tolerance needed for practical quantum computing applications. In this work, we explore the remarkably powerful formalism of detector error models, which fully captures fault-tolerance at the circuit level. We introduce the detector error model formalism in a pedagogical manner and provide several examples. Additionally, we apply the formalism to three different levels of abstraction in the engineering cycle of fault-tolerant circuit designs: finding robust syndrome extraction circuits, identifying efficient measurement schedules, and constructing fault-tolerant procedures. We enhance the surface code's resistance to measurement errors, devise short measurement schedules for color codes, and implement a more efficient fault-tolerant method for measuring logical operators.
{"title":"Designing fault-tolerant circuits using detector error models","authors":"Peter-Jan H.S. Derks, Alex Townsend-Teague, Ansgar G. Burchards, Jens Eisert","doi":"10.22331/q-2025-11-06-1905","DOIUrl":"https://doi.org/10.22331/q-2025-11-06-1905","url":null,"abstract":"Quantum error-correcting codes, such as subspace, subsystem, and Floquet codes, are typically constructed within the stabilizer formalism, which does not fully capture the idea of fault tolerance needed for practical quantum computing applications. In this work, we explore the remarkably powerful formalism of detector error models, which fully captures fault-tolerance at the circuit level. We introduce the detector error model formalism in a pedagogical manner and provide several examples. Additionally, we apply the formalism to three different levels of abstraction in the engineering cycle of fault-tolerant circuit designs: finding robust syndrome extraction circuits, identifying efficient measurement schedules, and constructing fault-tolerant procedures. We enhance the surface code's resistance to measurement errors, devise short measurement schedules for color codes, and implement a more efficient fault-tolerant method for measuring logical operators.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"4 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145448209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-06DOI: 10.22331/q-2025-11-06-1903
Tom Krüger, Wolfgang Mauerer
The Quantum Approximate Optimisation Algorithm (QAOA) is a widely studied quantum-classical iterative heuristic for combinatorial optimisation. While QAOA targets problems in complexity class NP, the classical optimisation procedure required in every iteration is itself known to be NP-hard. Still, advantage over classical approaches is suspected for certain scenarios, but nature and origin of its computational power are not yet satisfactorily understood. By introducing means of efficiently and accurately approximating the QAOA optimisation landscape from solution space structures, we derive a new algorithmic variant of unit-depth QAOA for two-level Hamiltonians (including all problems in NP): Instead of performing an iterative quantum-classical computation for each input instance, our non-iterative method is based on a quantum circuit that is instance-independent, but problem-specific. It matches or outperforms unit-depth QAOA for key combinatorial problems, despite reduced computational effort. Our approach is based on proving a long-standing conjecture regarding instance-independent structures in QAOA. By ensuring generality, we link existing empirical observations on QAOA parameter clustering to established approaches in theoretical computer science, and provide a sound foundation for understanding the link between structural properties of solution spaces and quantum optimisation.
{"title":"Out of the Loop: Structural Approximation of Optimisation Landscapes and non-Iterative Quantum Optimisation","authors":"Tom Krüger, Wolfgang Mauerer","doi":"10.22331/q-2025-11-06-1903","DOIUrl":"https://doi.org/10.22331/q-2025-11-06-1903","url":null,"abstract":"The Quantum Approximate Optimisation Algorithm (QAOA) is a widely studied quantum-classical iterative heuristic for combinatorial optimisation. While QAOA targets problems in complexity class NP, the classical optimisation procedure required in every iteration is itself known to be NP-hard. Still, advantage over classical approaches is suspected for certain scenarios, but nature and origin of its computational power are not yet satisfactorily understood.<br/> By introducing means of efficiently and accurately approximating the QAOA optimisation landscape from solution space structures, we derive a new algorithmic variant of unit-depth QAOA for two-level Hamiltonians (including all problems in NP): Instead of performing an iterative quantum-classical computation for each input instance, our non-iterative method is based on a quantum circuit that is instance-independent, but problem-specific. It matches or outperforms unit-depth QAOA for key combinatorial problems, despite reduced computational effort.<br/> Our approach is based on proving a long-standing conjecture regarding instance-independent structures in QAOA. By ensuring generality, we link existing empirical observations on QAOA parameter clustering to established approaches in theoretical computer science, and provide a sound foundation for understanding the link between structural properties of solution spaces and quantum optimisation.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"28 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145448204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-11-06DOI: 10.22331/q-2025-11-06-1908
Szilárd Szalay, Péter Nyári
We show that all reduced states of nonproduct symmetric Dicke states of arbitrary number of qudits are genuinely multipartite entangled, and of nonpositive partial transpose with respect to any subsystem.
{"title":"Dicke subsystems are entangled","authors":"Szilárd Szalay, Péter Nyári","doi":"10.22331/q-2025-11-06-1908","DOIUrl":"https://doi.org/10.22331/q-2025-11-06-1908","url":null,"abstract":"We show that all reduced states of nonproduct symmetric Dicke states of arbitrary number of qudits are genuinely multipartite entangled, and of nonpositive partial transpose with respect to any subsystem.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"135 1","pages":""},"PeriodicalIF":6.4,"publicationDate":"2025-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145448213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}