首页 > 最新文献

Quarterly Reviews of Biophysics最新文献

英文 中文
Off-pathway 3D-structure provides protection against spontaneous Asn/Asp isomerization: shielding proteins Achilles heel. 非通路3d结构提供了对自发Asn/Asp异构化的保护:屏蔽蛋白质的阿喀琉斯之踵。
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2020-01-31 DOI: 10.1017/S003358351900009X
András Láng, Imre Jákli, Kata Nóra Enyedi, Gábor Mező, Dóra K Menyhárd, András Perczel

Spontaneous deamidation prompted backbone isomerization of Asn/Asp residues resulting in - most cases - the insertion of an extra methylene group into the backbone poses a threat to the structural integrity of proteins. Here we present a systematical analysis of how temperature, pH, presence of charged residues, but most importantly backbone conformation and dynamics affect isomerization rates as determined by nuclear magnetic resonance in the case of designed peptide-models. We demonstrate that restricted mobility (such as being part of a secondary structural element) may safeguard against isomerization, but this protective factor is most effective in the case of off-pathway folds which can slow the reaction by several magnitudes compared to their on-pathway counterparts. We show that the geometric descriptors of the initial nucleophilic attack of the isomerization can be used to classify local conformation and contribute to the design of stable protein drugs, antibodies or the assessment of the severity of mutations.

At any –Asn/AspGly– sites in proteins a spontaneous backbone isomerization occurs within days under physiological conditions leading to various forms of proteopathy. This unwanted transformation especially harmful to long-lived proteins (e.g. hemoglobin and crystallins), can be slowed down, though never stopped, by a rigid three-dimensional protein fold, if it can delay in the conformational maze, on-pathway intermediates from occurring.

自发脱酰胺促进Asn/Asp残基的主链异构化,导致在大多数情况下,在主链中插入一个额外的亚甲基对蛋白质的结构完整性构成威胁。在这里,我们提出了一个系统的分析如何温度,pH值,带电残基的存在,但最重要的是主链构象和动力学影响核磁共振确定的多肽模型的情况下异构化率。我们证明,受限的流动性(如二级结构元件的一部分)可以防止异构化,但这种保护因素在非通路折叠的情况下最有效,与通路上的对偶物相比,它可以将反应减慢几个量级。研究表明,异构化初始亲核攻击的几何描述符可用于局部构象分类,并有助于设计稳定的蛋白质药物,抗体或评估突变的严重程度。在任何- asn /AspGly -位点,在生理条件下,自发的主干异构化在几天内发生,导致各种形式的蛋白质病变。这种不必要的转化对长寿命蛋白质(如血红蛋白和结晶蛋白)尤其有害,如果它能延缓构象迷宫中通路上中间体的发生,则可以通过刚性的三维蛋白质折叠来减缓,尽管永远不会停止。
{"title":"Off-pathway 3D-structure provides protection against spontaneous Asn/Asp isomerization: shielding proteins Achilles heel.","authors":"András Láng,&nbsp;Imre Jákli,&nbsp;Kata Nóra Enyedi,&nbsp;Gábor Mező,&nbsp;Dóra K Menyhárd,&nbsp;András Perczel","doi":"10.1017/S003358351900009X","DOIUrl":"https://doi.org/10.1017/S003358351900009X","url":null,"abstract":"<p><p>Spontaneous deamidation prompted backbone isomerization of Asn/Asp residues resulting in - most cases - the insertion of an extra methylene group into the backbone poses a threat to the structural integrity of proteins. Here we present a systematical analysis of how temperature, pH, presence of charged residues, but most importantly backbone conformation and dynamics affect isomerization rates as determined by nuclear magnetic resonance in the case of designed peptide-models. We demonstrate that restricted mobility (such as being part of a secondary structural element) may safeguard against isomerization, but this protective factor is most effective in the case of off-pathway folds which can slow the reaction by several magnitudes compared to their on-pathway counterparts. We show that the geometric descriptors of the initial nucleophilic attack of the isomerization can be used to classify local conformation and contribute to the design of stable protein drugs, antibodies or the assessment of the severity of mutations.</p><p><p>At any –Asn/AspGly– sites in proteins a spontaneous backbone isomerization occurs within days under physiological conditions leading to various forms of proteopathy. This unwanted transformation especially harmful to long-lived proteins (e.g. hemoglobin and crystallins), can be slowed down, though never stopped, by a rigid three-dimensional protein fold, if it can delay in the conformational maze, on-pathway intermediates from occurring.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"53 ","pages":"e2"},"PeriodicalIF":6.1,"publicationDate":"2020-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S003358351900009X","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37594865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
In cellulo FRET-FLIM and single molecule tracking reveal the supra-molecular organization of the pyoverdine bio-synthetic enzymes in Pseudomonas aeruginosa. 在纤维素中,FRET-FLIM和单分子跟踪揭示了铜绿假单胞菌中pyoverdine生物合成酶的超分子组织。
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2020-01-09 DOI: 10.1017/S0033583519000155
Véronique Gasser, Morgane Malrieu, Anne Forster, Yves Mély, Isabelle J Schalk, Julien Godet

The bio-synthesis of pyoverdine (PVD) in Pseudomonas aeruginosa involves multiple enzymatic steps including the action of non-ribosomal peptide synthetases (NRPSs). One hallmark of NRPS is their ability to make usage of non-proteinogenic amino-acids synthesized by co-expressed accessory enzymes. It is generally proposed that different enzymes of a secondary metabolic pathway assemble into large supra-molecular complexes. However, evidence for the assembly of sequential enzymes in the cellular context is sparse. Here, we used in cellulo single-molecule tracking and Förster resonance energy transfer measured by fluorescence lifetime microscopy (FRET-FLIM) to explore the spatial partitioning of the ornithine hydroxylase PvdA and its interactions with NRPS. We found PvdA was mostly diffusing bound to large complexes in the cytoplasm with a small exchangeable trapped fraction. FRET-FLIM clearly showed that PvdA is physically interacting with PvdJ, PvdI, PvdL, and PvdD, the four NRPS involved in the PVD pathway in Pseudomonas aeruginosa PAO1. The binding modes of PvdA were strikingly different according to the NRPS it is interacting with, suggesting that PvdA binding sites have co-evolved with the enzymatic active sites of NRPS. Our data provide evidence for strongly organized multi-enzymatic complexes responsible for the bio-synthesis of PVD and illustrate how binding sites have evolved to finely control the co-localization of sequential enzymes and promote metabolic pathway efficiency.

铜绿假单胞菌生物合成吡啶(PVD)涉及多个酶促步骤,包括非核糖体肽合成酶(NRPSs)的作用。NRPS的一个特点是它们能够利用由共表达的辅助酶合成的非蛋白质原性氨基酸。一般认为,次级代谢途径的不同酶组装成大的超分子复合物。然而,在细胞环境中序列酶组装的证据很少。本文采用纤维素单分子跟踪和荧光寿命显微镜(FRET-FLIM)测量的Förster共振能量转移来探索鸟氨酸羟化酶PvdA的空间分布及其与NRPS的相互作用。我们发现PvdA主要是扩散结合到细胞质中的大复合物上,并有一小部分可交换捕获。FRET-FLIM清楚地显示PvdA与铜绿假单胞菌PAO1中参与PVD通路的四种NRPS PvdJ、PvdI、PvdL和PvdD存在物理相互作用。PvdA的结合模式因其与NRPS的相互作用而有显著差异,表明PvdA的结合位点与NRPS的酶活性位点共同进化。我们的数据为强组织的多酶复合物负责PVD的生物合成提供了证据,并说明了结合位点如何进化到精细地控制序列酶的共定位并促进代谢途径效率。
{"title":"<i>In cellulo</i> FRET-FLIM and single molecule tracking reveal the supra-molecular organization of the pyoverdine bio-synthetic enzymes in <i>Pseudomonas aeruginosa</i>.","authors":"Véronique Gasser,&nbsp;Morgane Malrieu,&nbsp;Anne Forster,&nbsp;Yves Mély,&nbsp;Isabelle J Schalk,&nbsp;Julien Godet","doi":"10.1017/S0033583519000155","DOIUrl":"https://doi.org/10.1017/S0033583519000155","url":null,"abstract":"<p><p>The bio-synthesis of pyoverdine (PVD) in Pseudomonas aeruginosa involves multiple enzymatic steps including the action of non-ribosomal peptide synthetases (NRPSs). One hallmark of NRPS is their ability to make usage of non-proteinogenic amino-acids synthesized by co-expressed accessory enzymes. It is generally proposed that different enzymes of a secondary metabolic pathway assemble into large supra-molecular complexes. However, evidence for the assembly of sequential enzymes in the cellular context is sparse. Here, we used in cellulo single-molecule tracking and Förster resonance energy transfer measured by fluorescence lifetime microscopy (FRET-FLIM) to explore the spatial partitioning of the ornithine hydroxylase PvdA and its interactions with NRPS. We found PvdA was mostly diffusing bound to large complexes in the cytoplasm with a small exchangeable trapped fraction. FRET-FLIM clearly showed that PvdA is physically interacting with PvdJ, PvdI, PvdL, and PvdD, the four NRPS involved in the PVD pathway in Pseudomonas aeruginosa PAO1. The binding modes of PvdA were strikingly different according to the NRPS it is interacting with, suggesting that PvdA binding sites have co-evolved with the enzymatic active sites of NRPS. Our data provide evidence for strongly organized multi-enzymatic complexes responsible for the bio-synthesis of PVD and illustrate how binding sites have evolved to finely control the co-localization of sequential enzymes and promote metabolic pathway efficiency.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"53 ","pages":"e1"},"PeriodicalIF":6.1,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583519000155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"37523664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces 内皮表层的结构和功能:揭示生物表面的纳米结构
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-11-27 DOI: 10.1017/S0033583519000118
B. Reines, B. Ninham
Abstract Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the ‘endothelial surface layer’ or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a ‘lung’ in miniature. This interpretation may have far-reaching consequences for physiology.
在现代生物学未解之谜中,被称为“内皮表面层”(ESL)的血管内膜的性质是什么。在静脉微血管中,它的厚度为半微米。ESL的底部比内皮糖萼(eGC)厚10倍,据推测主要由水组成,但其硬度足以排除红细胞。这怎么可能呢?物理化学的发展表明,静脉ESL实际上是由组织代谢产生的二氧化碳纳米泡组成的,在eGC中形成有核的泡沫。对于动脉来说,ESL主要由吸入空气中的O2和N2纳米气泡组成。泡沫的气泡被血清电解质和蛋白质的薄层以及eGC的带电聚合物链的栅栏分离和稳定。ESL似乎是一个呼吸器官,与流动的血液相连,是一个微型的“肺”的延伸。这种解释可能对生理学产生深远的影响。
{"title":"Structure and function of the endothelial surface layer: unraveling the nanoarchitecture of biological surfaces","authors":"B. Reines, B. Ninham","doi":"10.1017/S0033583519000118","DOIUrl":"https://doi.org/10.1017/S0033583519000118","url":null,"abstract":"Abstract Among the unsolved mysteries of modern biology is the nature of a lining of blood vessels called the ‘endothelial surface layer’ or ESL. In venous micro-vessels, it is half a micron in thickness. The ESL is 10 times thicker than the endothelial glycocalyx (eGC) at its base, has been presumed to be comprised mainly of water, yet is rigid enough to exclude red blood cells. How is this possible? Developments in physical chemistry suggest that the venous ESL is actually comprised of nanobubbles of CO2, generated from tissue metabolism, in a foam nucleated in the eGC. For arteries, the ESL is dominated by nanobubbles of O2 and N2 from inspired air. The bubbles of the foam are separated and stabilized by thin layers of serum electrolyte and proteins, and a palisade of charged polymer strands of the eGC. The ESL seems to be a respiratory organ contiguous with the flowing blood, an extension of, and a ‘lung’ in miniature. This interpretation may have far-reaching consequences for physiology.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"14 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81814957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 22
The biophysics of superoxide dismutase-1 and amyotrophic lateral sclerosis 超氧化物歧化酶-1与肌萎缩侧索硬化症的生物物理学
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-11-25 DOI: 10.1017/S003358351900012X
G. Wright, S. Antonyuk, S. Hasnain
Abstract Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
很少有蛋白质像超氧化物歧化酶-1 (SOD1)那样受到如此严格的审查。近一个世纪以来,科学家们一直在研究它的形态、功能,以及后来它在神经退行性疾病肌萎缩性侧索硬化症(ALS)中的功能失调。我们现在知道SOD1是一种锌和铜金属酶,作为我们抗氧化防御和呼吸调节系统的一部分,它可以清除超氧化物。甚至在SOD1基因的有害突变与ALS相关之前,人类SOD1的第一个晶体结构就表明了结构完整性降低的可能性。随着一系列令人印象深刻的生物物理研究对SOD1突变体特征的详细研究,这一概念在这期间不断发展。我们现在认识到与als相关的突变如何扰乱SOD1的成熟过程,降低其折叠能力,降低其热稳定性和半衰期。因此,突变的SOD1易于单体化、非规范的自我相互作用、形成小的错误折叠的低聚物,并最终在ALS患者神经元中发现的不溶性包涵体中积累。我们还发现,一些翻译后修饰可以推动野生型SOD1沿着这条毒性途径前进。最近,我们开始将ALS视为一种朊病毒样疾病,其症状和SOD1错误折叠本身都会传播给邻近的细胞。这增加了在最初疾病出现后进行干预的可能性。一些小分子和基于生物的策略已经被设计出来,它们直接针对SOD1分子来改变被认为是导致ALS的行为。在这里,我们提供了许多生物物理学进展的全面回顾,这些进展塑造了我们对SOD1生物学的看法,以及最近旨在将这些知识应用于ALS治疗结果的工作。
{"title":"The biophysics of superoxide dismutase-1 and amyotrophic lateral sclerosis","authors":"G. Wright, S. Antonyuk, S. Hasnain","doi":"10.1017/S003358351900012X","DOIUrl":"https://doi.org/10.1017/S003358351900012X","url":null,"abstract":"Abstract Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"56 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76195250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
The behavior of ions in water is controlled by their water affinity 离子在水中的行为受其亲水性控制
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-11-18 DOI: 10.1017/S0033583519000106
K. D. Collins
Abstract The strong, long-range electrostatic forces described by Coulomb's law disappear for ions in water, and the behavior of these ions is instead controlled by their water affinity – a weak, short-range force which arises from their charge density. This was established experimentally in the mid-1980s by size-exclusion chromatography on carefully calibrated Sephadex® G-10 (which measures the effective volume and thus the water affinity of an ion) and by neutron diffraction with isotopic substitution (which measures the density and orientation of water molecules near the diffracting ion and thus its water affinity). These conclusions have been confirmed more recently by molecular dynamics simulations, which explicitly model each individual water molecule. This surprising change in force regime occurs because the oppositely charged ions in aqueous salt solutions exist functionally as ion pairs (separated by 0, 1 or 2 water molecules) as has now been shown by dielectric relaxation spectroscopy; this cancels out the strong long-range electrostatic forces and allows the weak, short-range water affinity effects to come to the fore. This microscopic structure of aqueous salt solutions is not captured by models utilizing a macroscopic dielectric constant. Additionally, the Law of Matching Water Affinity, first described in 1997 and 2004, establishes that contact ion pair formation is controlled by water affinity and is a major determinant of the solubility of charged species since only a net neutral species can change phases.
库仑定律所描述的强的、远距离的静电力对离子在水中消失了,而这些离子的行为是由它们的亲水性控制的——一种由它们的电荷密度产生的弱的、短程的力。这是在20世纪80年代中期通过仔细校准的Sephadex®G-10(测量有效体积,从而测量离子的亲水性)和同位素取代的中子衍射(测量衍射离子附近水分子的密度和取向,从而测量其亲水性)通过实验建立的。这些结论最近得到了分子动力学模拟的证实,该模拟明确地模拟了每个单独的水分子。这种令人惊讶的力的变化发生是因为盐水溶液中带相反电荷的离子以离子对的形式存在(由0,1或2个水分子分开),这已经被介电弛豫光谱所证明;这抵消了强大的远程静电力,使弱的、近距离的亲水性效应脱颖而出。利用宏观介电常数的模型无法捕捉到盐水溶液的这种微观结构。此外,1997年和2004年首次描述的匹配亲水性定律(Law of Matching Water Affinity)表明,接触离子对的形成是由亲水性控制的,并且是带电物质溶解度的主要决定因素,因为只有净中性物质才能改变相。
{"title":"The behavior of ions in water is controlled by their water affinity","authors":"K. D. Collins","doi":"10.1017/S0033583519000106","DOIUrl":"https://doi.org/10.1017/S0033583519000106","url":null,"abstract":"Abstract The strong, long-range electrostatic forces described by Coulomb's law disappear for ions in water, and the behavior of these ions is instead controlled by their water affinity – a weak, short-range force which arises from their charge density. This was established experimentally in the mid-1980s by size-exclusion chromatography on carefully calibrated Sephadex® G-10 (which measures the effective volume and thus the water affinity of an ion) and by neutron diffraction with isotopic substitution (which measures the density and orientation of water molecules near the diffracting ion and thus its water affinity). These conclusions have been confirmed more recently by molecular dynamics simulations, which explicitly model each individual water molecule. This surprising change in force regime occurs because the oppositely charged ions in aqueous salt solutions exist functionally as ion pairs (separated by 0, 1 or 2 water molecules) as has now been shown by dielectric relaxation spectroscopy; this cancels out the strong long-range electrostatic forces and allows the weak, short-range water affinity effects to come to the fore. This microscopic structure of aqueous salt solutions is not captured by models utilizing a macroscopic dielectric constant. Additionally, the Law of Matching Water Affinity, first described in 1997 and 2004, establishes that contact ion pair formation is controlled by water affinity and is a major determinant of the solubility of charged species since only a net neutral species can change phases.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"134 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77387029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation 细胞粘附的调控:整合素、其配体、细胞质行为体和磷酸化的协同作用
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-11-11 DOI: 10.1017/S0033583519000088
C. Gahmberg, M. Grönholm, Sudarrshan Madhavan, Farhana Jahan, Esa T Mikkola, Larisa Viazmina, E. Koivunen
Abstract Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.
整合素是在所有有核哺乳动物细胞中表达的大型异二聚体1型膜蛋白。18条α-链和8条β-链可以结合形成24种不同的整合素。它们是细胞粘附蛋白,与多种细胞和细胞外配体结合。整合素是细胞迁移、止血、细胞从血流中移位和进一步移动到组织中所必需的,也是免疫反应和组织形态发生所必需的。重要的是,整合素通常不具有活性,但需要激活才能具有粘附性。整合素通过整合素配体结合由外而内激活,或通过细胞内信号传导由内而外激活。一个重要的问题是如何调节整合素的活性,这一话题最近引起了人们的广泛关注。整合素对配体结合的亲和力变化是由于变构结构的改变,但同样重要的是由于整合素在质膜平面上聚集而引起的亲和力变化。最近的研究已经部分解决了整合素细胞在激活过程中表面结构的变化。整合素细胞质结构域相对较短,但通过与多种细胞质蛋白以受调节的方式相互作用,整合素获得了许多重要的特性,不仅对细胞粘附和运动重要,而且对细胞信号传导也很重要。最近的研究表明,特定的整合素磷酸化在整合素活性的调节中起着关键作用。我们在这篇综述中的目的是整合现有的知识,使人们能够理解细胞粘附是如何动态调节的。
{"title":"Regulation of cell adhesion: a collaborative effort of integrins, their ligands, cytoplasmic actors, and phosphorylation","authors":"C. Gahmberg, M. Grönholm, Sudarrshan Madhavan, Farhana Jahan, Esa T Mikkola, Larisa Viazmina, E. Koivunen","doi":"10.1017/S0033583519000088","DOIUrl":"https://doi.org/10.1017/S0033583519000088","url":null,"abstract":"Abstract Integrins are large heterodimeric type 1 membrane proteins expressed in all nucleated mammalian cells. Eighteen α-chains and eight β-chains can combine to form 24 different integrins. They are cell adhesion proteins, which bind to a large variety of cellular and extracellular ligands. Integrins are required for cell migration, hemostasis, translocation of cells out from the blood stream and further movement into tissues, but also for the immune response and tissue morphogenesis. Importantly, integrins are not usually active as such, but need activation to become adhesive. Integrins are activated by outside-in activation through integrin ligand binding, or by inside-out activation through intracellular signaling. An important question is how integrin activity is regulated, and this topic has recently drawn much attention. Changes in integrin affinity for ligand binding are due to allosteric structural alterations, but equally important are avidity changes due to integrin clustering in the plane of the plasma membrane. Recent studies have partially solved how integrin cell surface structures change during activation. The integrin cytoplasmic domains are relatively short, but by interacting with a variety of cytoplasmic proteins in a regulated manner, the integrins acquire a number of properties important not only for cell adhesion and movement, but also for cellular signaling. Recent work has shown that specific integrin phosphorylations play pivotal roles in the regulation of integrin activity. Our purpose in this review is to integrate the present knowledge to enable an understanding of how cell adhesion is dynamically regulated.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"19 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81772225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light 夜间导航:昏暗光线下基对磁接收灵敏度的基本限制
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-10-22 DOI: 10.1017/S0033583519000076
Hamish G. Hiscock, Tom W. Hiscock, Tom W. Hiscock, D. Kattnig, T. Scrivener, Alan M. Lewis, D. Manolopoulos, P. Hore
Abstract Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.
夜游鸣禽似乎通过视网膜感光细胞中隐色素黄蛋白中光化学形成的自由基对中间体来感知地球磁场的方向。考虑到夜间迁徙者所经历的低光照水平,这种依赖光的机制是否足够敏感,这是一个悬而未决的问题。可用光子的稀缺性导致分布在视网膜周围的磁感受器产生的信号具有显著的不确定性。在这里,我们使用信息论的结果来获得精度的下限估计,鸟类可以仅使用地磁线索来定位自己。我们的方法通过计算光子短缺条件下的最佳罗盘精度,绕过了目前缺乏关于体内磁信号转导和处理的知识。我们使用这种方法来评估三种似是而非的隐色素衍生的含黄素自由基对作为潜在磁受体的性能。
{"title":"Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light","authors":"Hamish G. Hiscock, Tom W. Hiscock, Tom W. Hiscock, D. Kattnig, T. Scrivener, Alan M. Lewis, D. Manolopoulos, P. Hore","doi":"10.1017/S0033583519000076","DOIUrl":"https://doi.org/10.1017/S0033583519000076","url":null,"abstract":"Abstract Night-migratory songbirds appear to sense the direction of the Earth's magnetic field via radical pair intermediates formed photochemically in cryptochrome flavoproteins contained in photoreceptor cells in their retinas. It is an open question whether this light-dependent mechanism could be sufficiently sensitive given the low-light levels experienced by nocturnal migrants. The scarcity of available photons results in significant uncertainty in the signal generated by the magnetoreceptors distributed around the retina. Here we use results from Information Theory to obtain a lower bound estimate of the precision with which a bird could orient itself using only geomagnetic cues. Our approach bypasses the current lack of knowledge about magnetic signal transduction and processing in vivo by computing the best-case compass precision under conditions where photons are in short supply. We use this method to assess the performance of three plausible cryptochrome-derived flavin-containing radical pairs as potential magnetoreceptors.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"1 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79743052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers 用光跟踪RNA:荧光开启RNA适体的选择、结构和设计
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-08-19 DOI: 10.1017/S0033583519000064
R. Trachman, A. Ferré-D’Amaré
Abstract Fluorescence turn-on aptamers, in vitro evolved RNA molecules that bind conditional fluorophores and activate their fluorescence, have emerged as RNA counterparts of the fluorescent proteins. Turn-on aptamers have been selected to bind diverse fluorophores, and they achieve varying degrees of specificity and affinity. These RNA–fluorophore complexes, many of which exceed the brightness of green fluorescent protein and their variants, can be used as tags for visualizing RNA localization and transport in live cells. Structure determination of several fluorescent RNAs revealed that they have diverse, unrelated overall architectures. As most of these RNAs activate the fluorescence of their ligands by restraining their photoexcited states into a planar conformation, their fluorophore binding sites have in common a planar arrangement of several nucleobases, most commonly a G-quartet. Nonetheless, each turn-on aptamer has developed idiosyncratic structural solutions to achieve specificity and efficient fluorescence turn-on. The combined structural diversity of fluorophores and turn-on RNA aptamers has already produced combinations that cover the visual spectrum. Further molecular evolution and structure-guided engineering is likely to produce fluorescent tags custom-tailored to specific applications.
荧光开启适体,在体外进化的RNA分子结合条件荧光团并激活其荧光,已经成为荧光蛋白的RNA对应物。开启适配体已被选择来结合不同的荧光团,它们具有不同程度的特异性和亲和力。这些RNA -荧光团复合物,其中许多超过绿色荧光蛋白及其变体的亮度,可以用作可视化RNA在活细胞中的定位和运输的标签。对几种荧光rna的结构测定表明,它们具有不同的、不相关的总体结构。由于大多数这些rna通过将其光激发态限制为平面构象来激活其配体的荧光,因此它们的荧光基团结合位点共同具有几个核碱基的平面排列,最常见的是g -四重奏。尽管如此,每个开启适体已经发展出特殊的结构解决方案,以实现特异性和有效的荧光开启。荧光团的结构多样性和开启RNA适体的组合已经产生了覆盖视觉光谱的组合。进一步的分子进化和结构引导工程可能会产生为特定应用量身定制的荧光标签。
{"title":"Tracking RNA with light: selection, structure, and design of fluorescence turn-on RNA aptamers","authors":"R. Trachman, A. Ferré-D’Amaré","doi":"10.1017/S0033583519000064","DOIUrl":"https://doi.org/10.1017/S0033583519000064","url":null,"abstract":"Abstract Fluorescence turn-on aptamers, in vitro evolved RNA molecules that bind conditional fluorophores and activate their fluorescence, have emerged as RNA counterparts of the fluorescent proteins. Turn-on aptamers have been selected to bind diverse fluorophores, and they achieve varying degrees of specificity and affinity. These RNA–fluorophore complexes, many of which exceed the brightness of green fluorescent protein and their variants, can be used as tags for visualizing RNA localization and transport in live cells. Structure determination of several fluorescent RNAs revealed that they have diverse, unrelated overall architectures. As most of these RNAs activate the fluorescence of their ligands by restraining their photoexcited states into a planar conformation, their fluorophore binding sites have in common a planar arrangement of several nucleobases, most commonly a G-quartet. Nonetheless, each turn-on aptamer has developed idiosyncratic structural solutions to achieve specificity and efficient fluorescence turn-on. The combined structural diversity of fluorophores and turn-on RNA aptamers has already produced combinations that cover the visual spectrum. Further molecular evolution and structure-guided engineering is likely to produce fluorescent tags custom-tailored to specific applications.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"16 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76492579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 28
Dynamics of proteins in solution 溶液中蛋白质的动力学
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-06-13 DOI: 10.1017/S0033583519000027
M. Grimaldo, F. Roosen‐Runge, Fajun Zhang, F. Schreiber, T. Seydel
Abstract The dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.
蛋白质在溶液中的动力学包括多种过程,如主链和侧链波动,结构域间运动,以及全局旋转和平移(即质心)扩散。由于蛋白质动力学与蛋白质功能和基本运输过程有关,因此对溶液中蛋白质动力学的详细机制理解和监测是非常必要的。蛋白质动力学的层次特征要求实验工具处理广泛的时间和长度尺度。我们讨论了不同的技术如何有助于蛋白质动力学的全面图景,并特别关注中子光谱学的结果。我们概述了基本原则,并回顾了可用的仪器以及相关的分析框架。
{"title":"Dynamics of proteins in solution","authors":"M. Grimaldo, F. Roosen‐Runge, Fajun Zhang, F. Schreiber, T. Seydel","doi":"10.1017/S0033583519000027","DOIUrl":"https://doi.org/10.1017/S0033583519000027","url":null,"abstract":"Abstract The dynamics of proteins in solution includes a variety of processes, such as backbone and side-chain fluctuations, interdomain motions, as well as global rotational and translational (i.e. center of mass) diffusion. Since protein dynamics is related to protein function and essential transport processes, a detailed mechanistic understanding and monitoring of protein dynamics in solution is highly desirable. The hierarchical character of protein dynamics requires experimental tools addressing a broad range of time- and length scales. We discuss how different techniques contribute to a comprehensive picture of protein dynamics, and focus in particular on results from neutron spectroscopy. We outline the underlying principles and review available instrumentation as well as related analysis frameworks.","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"105 1","pages":""},"PeriodicalIF":6.1,"publicationDate":"2019-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79275017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 52
The theory of frame ordering: observing motions in calmodulin complexes. 框架有序理论:观察钙调素复合物的运动。
IF 6.1 2区 生物学 Q1 BIOPHYSICS Pub Date : 2019-04-03 DOI: 10.1017/S0033583519000015
Edward James d'Auvergne, Christian Griesinger

Large scale functional motions of molecules are studied experimentally using numerous molecular and biophysics techniques, the data from which are subsequently interpreted using diverse models of Brownian molecular dynamics. To unify all rotational physics techniques and motional models, the frame order tensor - a universal statistical mechanics theory based on the rotational ordering of rigid body frames - is herein formulated. The frame ordering is the fundamental physics that governs how motions modulate rotational molecular physics and it defines the properties and maximum information content encoded in the observable physics. Using the tensor to link residual dipolar couplings and pseudo-contact shifts, two distinct information-rich and atomic-level biophysical measurements from the field of nuclear magnetic resonance spectroscopy, to a number of basic mechanical joint models, a highly dynamic state of calmodulin (CaM) bound to a target peptide in a tightly closed conformation was observed. Intra- and inter-domain motions reveal the CaM complex to be entropically primed for peptide release.

分子的大尺度功能运动实验研究使用了许多分子和生物物理学技术,从这些数据随后解释使用不同的布朗分子动力学模型。为了统一所有旋转物理技术和运动模型,本文建立了基于刚体框架旋转有序的通用统计力学理论——框架阶张量。框架排序是控制运动如何调节旋转分子物理的基本物理,它定义了可观察物理中编码的属性和最大信息内容。利用张量将残差偶极耦合和伪接触位移这两种不同的信息丰富的原子水平的生物物理测量从核磁共振波谱学领域连接到一些基本的机械关节模型,观察到钙调素(CaM)以紧密封闭的构象结合到靶肽的高度动态状态。结构域内和结构域间的运动揭示了CaM复合体是为肽释放熵启动的。
{"title":"The theory of frame ordering: observing motions in calmodulin complexes.","authors":"Edward James d'Auvergne,&nbsp;Christian Griesinger","doi":"10.1017/S0033583519000015","DOIUrl":"https://doi.org/10.1017/S0033583519000015","url":null,"abstract":"<p><p>Large scale functional motions of molecules are studied experimentally using numerous molecular and biophysics techniques, the data from which are subsequently interpreted using diverse models of Brownian molecular dynamics. To unify all rotational physics techniques and motional models, the frame order tensor - a universal statistical mechanics theory based on the rotational ordering of rigid body frames - is herein formulated. The frame ordering is the fundamental physics that governs how motions modulate rotational molecular physics and it defines the properties and maximum information content encoded in the observable physics. Using the tensor to link residual dipolar couplings and pseudo-contact shifts, two distinct information-rich and atomic-level biophysical measurements from the field of nuclear magnetic resonance spectroscopy, to a number of basic mechanical joint models, a highly dynamic state of calmodulin (CaM) bound to a target peptide in a tightly closed conformation was observed. Intra- and inter-domain motions reveal the CaM complex to be entropically primed for peptide release.</p>","PeriodicalId":20828,"journal":{"name":"Quarterly Reviews of Biophysics","volume":"52 ","pages":"e3"},"PeriodicalIF":6.1,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/S0033583519000015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39897403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Quarterly Reviews of Biophysics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1