Pub Date : 2023-05-30DOI: 10.1186/s12977-023-00625-8
María José Lista, Anne-Caroline Jousset, Mingpan Cheng, Violaine Saint-André, Elouan Perrot, Melissa Rodrigues, Carmelo Di Primo, Danielle Gadelle, Elenia Toccafondi, Emmanuel Segeral, Clarisse Berlioz-Torrent, Stéphane Emiliani, Jean-Louis Mergny, Marc Lavigne
Background: Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus.
Results: In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes.
Conclusions: Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.
{"title":"DNA topoisomerase 1 represses HIV-1 promoter activity through its interaction with a guanine quadruplex present in the LTR sequence.","authors":"María José Lista, Anne-Caroline Jousset, Mingpan Cheng, Violaine Saint-André, Elouan Perrot, Melissa Rodrigues, Carmelo Di Primo, Danielle Gadelle, Elenia Toccafondi, Emmanuel Segeral, Clarisse Berlioz-Torrent, Stéphane Emiliani, Jean-Louis Mergny, Marc Lavigne","doi":"10.1186/s12977-023-00625-8","DOIUrl":"https://doi.org/10.1186/s12977-023-00625-8","url":null,"abstract":"<p><strong>Background: </strong>Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus.</p><p><strong>Results: </strong>In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes.</p><p><strong>Conclusions: </strong>Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"10"},"PeriodicalIF":3.3,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10228017/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9760357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-27DOI: 10.1186/s12977-023-00624-9
Philippe Colin, Rajesh P Ringe, Anila Yasmeen, Gabriel Ozorowski, Thomas J Ketas, Wen-Hsin Lee, Andrew B Ward, John P Moore, P J Klasse
Background: Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations.
Results: We observed different persistent fractions for neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by clashes that the conformational plasticity of B41 Env causes.
Conclusion: Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.
{"title":"Conformational antigenic heterogeneity as a cause of the persistent fraction in HIV-1 neutralization.","authors":"Philippe Colin, Rajesh P Ringe, Anila Yasmeen, Gabriel Ozorowski, Thomas J Ketas, Wen-Hsin Lee, Andrew B Ward, John P Moore, P J Klasse","doi":"10.1186/s12977-023-00624-9","DOIUrl":"https://doi.org/10.1186/s12977-023-00624-9","url":null,"abstract":"<p><strong>Background: </strong>Neutralizing antibodies (NAbs) protect against HIV-1 acquisition in animal models and show promise in treatment of infection. They act by binding to the viral envelope glycoprotein (Env), thereby blocking its receptor interactions and fusogenic function. The potency of neutralization is largely determined by affinity. Less well explained is the persistent fraction, the plateau of remaining infectivity at the highest antibody concentrations.</p><p><strong>Results: </strong>We observed different persistent fractions for neutralization of pseudovirus derived from two Tier-2 isolates of HIV-1, BG505 (Clade A) and B41 (Clade B): it was pronounced for B41 but not BG505 neutralization by NAb PGT151, directed to the interface between the outer and transmembrane subunits of Env, and negligible for either virus by NAb PGT145 to an apical epitope. Autologous neutralization by poly- and monoclonal NAbs from rabbits immunized with soluble native-like B41 trimer also left substantial persistent fractions. These NAbs largely target a cluster of epitopes lining a hole in the dense glycan shield of Env around residue 289. We partially depleted B41-virion populations by incubating them with PGT145- or PGT151-conjugated beads. Each depletion reduced the sensitivity to the depleting NAb and enhanced it to the other. Autologous neutralization by the rabbit NAbs was decreased for PGT145-depleted and enhanced for PGT151-depleted B41 pseudovirus. Those changes in sensitivity encompassed both potency and the persistent fraction. We then compared soluble native-like BG505 and B41 Env trimers affinity-purified by each of three NAbs: 2G12, PGT145, or PGT151. Surface plasmon resonance showed differences among the fractions in antigenicity, including kinetics and stoichiometry, congruently with the differential neutralization. The large persistent fraction after PGT151 neutralization of B41 was attributable to low stoichiometry, which we explained structurally by clashes that the conformational plasticity of B41 Env causes.</p><p><strong>Conclusion: </strong>Distinct antigenic forms even of clonal HIV-1 Env, detectable among soluble native-like trimer molecules, are distributed over virions and may profoundly mold neutralization of certain isolates by certain NAbs. Affinity purifications with some antibodies may yield immunogens that preferentially expose epitopes for broadly active NAbs, shielding less cross-reactive ones. NAbs reactive with multiple conformers will together reduce the persistent fraction after passive and active immunization.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"9"},"PeriodicalIF":3.3,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10221750/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9583846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1186/s12977-023-00626-7
Brian Nyiro, Sharon Bright Amanya, Alice Bayiyana, Francis Wasswa, Eva Nabulime, Alex Kayongo, Immaculate Nankya, Gerald Mboowa, David Patrick Kateete, Obondo James Sande
Background: Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups.
Results: The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death.
Conclusion: CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.
背景:据报道,HIV 控制者的 HIV 控制机制有多种,包括 CCR5 表达减少、保护性 HLA、病毒限制因子、广谱中和抗体以及更有效的 T 细胞反应。然而,没有一种机制能普遍解释所有控制者的 HIV 控制情况。在本研究中,我们确定了 CCR5 表达减少是否是乌干达 HIV 控制者控制 HIV 的原因。我们通过对从两个不同群体收集的存档 PBMCs 中分离出的 CD4 + T 细胞进行体外鉴定,确定了乌干达 HIV 控制者与接受治疗的非 HIV 控制者的 CCR5 表达情况:结果:HIV 控制者和接受治疗的 HIV 非控制者之间 CCR5 + CD4 + T 细胞的百分比相似(ECs vs. NCs,P = 0.6010;VCs vs. NCs,P = 0.0702),但控制者的 T 细胞在细胞表面的 CCR5 表达明显减少(ECs vs. NCs,P = 0.0210;VCs vs. NCs,P = 0.0312)。此外,我们还在一部分 HIV 控制者中发现了 rs1799987 SNP,以前曾有报道称这种突变会降低 CCR5 的表达。与此形成鲜明对比的是,我们发现 rs41469351 SNP 在 HIV 非控制者中很常见。该 SNP 以前曾被证明与围产期 HIV 传播、HIV 感染细胞阴道脱落和死亡风险增加有关:结论:CCR5 在乌干达 HIV 控制者的 HIV 控制中发挥着非多余的作用。艾滋病病毒感染者尽管抗逆转录病毒疗法不成熟,但仍能保持较高的 CD4 + T 细胞,部分原因是他们的 CD4 + T 细胞的 CCR5 密度显著降低。
{"title":"Reduced CCR5 expression among Uganda HIV controllers.","authors":"Brian Nyiro, Sharon Bright Amanya, Alice Bayiyana, Francis Wasswa, Eva Nabulime, Alex Kayongo, Immaculate Nankya, Gerald Mboowa, David Patrick Kateete, Obondo James Sande","doi":"10.1186/s12977-023-00626-7","DOIUrl":"10.1186/s12977-023-00626-7","url":null,"abstract":"<p><strong>Background: </strong>Several mechanisms including reduced CCR5 expression, protective HLA, viral restriction factors, broadly neutralizing antibodies, and more efficient T-cell responses, have been reported to account for HIV control among HIV controllers. However, no one mechanism universally accounts for HIV control among all controllers. In this study we determined whether reduced CCR5 expression accounts for HIV control among Ugandan HIV controllers. We determined CCR5 expression among Ugandan HIV controllers compared with treated HIV non-controllers through ex-vivo characterization of CD4 + T cells isolated from archived PBMCs collected from the two distinct groups.</p><p><strong>Results: </strong>The percentage of CCR5 + CD4 + T cells was similar between HIV controllers and treated HIV non-controllers (ECs vs. NCs, P = 0.6010; VCs vs. NCs, P = 0.0702) but T cells from controllers had significantly reduced CCR5 expression on their cell surface (ECs vs. NCs, P = 0.0210; VCs vs. NCs, P = 0.0312). Furthermore, we identified rs1799987 SNP among a subset of HIV controllers, a mutation previously reported to reduce CCR5 expression. In stark contrast, we identified the rs41469351 SNP to be common among HIV non-controllers. This SNP has previously been shown to be associated with increased perinatal HIV transmission, vaginal shedding of HIV-infected cells and increased risk of death.</p><p><strong>Conclusion: </strong>CCR5 has a non-redundant role in HIV control among Ugandan HIV controllers. HIV controllers maintain high CD4 + T cells despite being ART naïve partly because their CD4 + T cells have significantly reduced CCR5 densities.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"8"},"PeriodicalIF":3.3,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10210444/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10133237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-18DOI: 10.1186/s12977-023-00621-y
Jessica Eddy, Fisher Pham, Rachel Chee, Esther Park, Nathan Dapprich, Stacy L DeRuiter, Anding Shen
Background: With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells.
Results: We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection.
Conclusion: Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.
{"title":"Intestinal endothelial cells increase HIV infection and latency in resting and activated CD4 + T cells, particularly affecting CCR6 + CD4 + T cells.","authors":"Jessica Eddy, Fisher Pham, Rachel Chee, Esther Park, Nathan Dapprich, Stacy L DeRuiter, Anding Shen","doi":"10.1186/s12977-023-00621-y","DOIUrl":"10.1186/s12977-023-00621-y","url":null,"abstract":"<p><strong>Background: </strong>With suppressive antiretroviral therapy, HIV infection is well-managed in most patients. However, eradication and cure are still beyond reach due to latent viral reservoirs in CD4 + T cells, particularly in lymphoid tissue environments including the gut associated lymphatic tissues. In HIV patients, there is extensive depletion of T helper cells, particularly T helper 17 cells from the intestinal mucosal area, and the gut is one of the largest viral reservoir sites. Endothelial cells line lymphatic and blood vessels and were found to promote HIV infection and latency in previous studies. In this study, we examined endothelial cells specific to the gut mucosal area-intestinal endothelial cells-for their impact on HIV infection and latency in T helper cells.</p><p><strong>Results: </strong>We found that intestinal endothelial cells dramatically increased productive and latent HIV infection in resting CD4 + T helper cells. In activated CD4 + T cells, endothelial cells enabled the formation of latent infection in addition to the increase of productive infection. Endothelial-cell-mediated HIV infection was more prominent in memory T cells than naïve T cells, and it involved the cytokine IL-6 but did not involve the co-stimulatory molecule CD2. The CCR6 + T helper 17 subpopulation was particularly susceptible to such endothelial-cell-promoted infection.</p><p><strong>Conclusion: </strong>Endothelial cells, which are widely present in lymphoid tissues including the intestinal mucosal area and interact regularly with T cells physiologically, significantly increase HIV infection and latent reservoir formation in CD4 + T cells, particularly in CCR6 + T helper 17 cells. Our study highlighted the importance of endothelial cells and the lymphoid tissue environment in HIV pathology and persistence.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"7"},"PeriodicalIF":3.3,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10197447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-16DOI: 10.1186/s12977-023-00622-x
Fabio Romerio
Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.
{"title":"Origin and functional role of antisense transcription in endogenous and exogenous retroviruses.","authors":"Fabio Romerio","doi":"10.1186/s12977-023-00622-x","DOIUrl":"https://doi.org/10.1186/s12977-023-00622-x","url":null,"abstract":"<p><p>Most proteins expressed by endogenous and exogenous retroviruses are encoded in the sense (positive) strand of the genome and are under the control of regulatory elements within the 5' long terminal repeat (LTR). A number of retroviral genomes also encode genes in the antisense (negative) strand and their expression is under the control of negative sense promoters within the 3' LTR. In the case of the Human T-cell Lymphotropic Virus 1 (HTLV-1), the antisense protein HBZ has been shown to play a critical role in the virus lifecycle and in the pathogenic process, while the function of the Human Immunodeficiency Virus 1 (HIV-1) antisense protein ASP remains unknown. However, the expression of 3' LTR-driven antisense transcripts is not always demonstrably associated with the presence of an antisense open reading frame encoding a viral protein. Moreover, even in the case of retroviruses that do express an antisense protein, such as HTLV-1 and the pandemic strains of HIV-1, the 3' LTR-driven antisense transcript shows both protein-coding and noncoding activities. Indeed, the ability to express antisense transcripts appears to be phylogenetically more widespread among endogenous and exogenous retroviruses than the presence of a functional antisense open reading frame within these transcripts. This suggests that retroviral antisense transcripts may have originated as noncoding molecules with regulatory activity that in some cases later acquired protein-coding function. Here, we will review examples of endogenous and exogenous retroviral antisense transcripts, and the ways through which they benefit viral persistence in the host.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"6"},"PeriodicalIF":3.3,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9636270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01DOI: 10.1186/s12977-023-00620-z
Ming-Han C Tsai, Sarah J Caswell, Elizabeth R Morris, Melanie C Mann, Simon Pennell, Geoff Kelly, Harriet C T Groom, Ian A Taylor, Kate N Bishop
Background: SAMHD1 is a deoxynucleotide triphosphohydrolase that restricts replication of HIV-1 in differentiated leucocytes. HIV-1 is not restricted in cycling cells and it has been proposed that this is due to phosphorylation of SAMHD1 at T592 in these cells inactivating the enzymatic activity. To distinguish between theories for how SAMHD1 restricts HIV-1 in differentiated but not cycling cells, we analysed the effects of substitutions at T592 on restriction and dNTP levels in both cycling and differentiated cells as well as tetramer stability and enzymatic activity in vitro.
Results: We first showed that HIV-1 restriction was not due to SAMHD1 nuclease activity. We then characterised a panel of SAMHD1 T592 mutants and divided them into three classes. We found that a subset of mutants lost their ability to restrict HIV-1 in differentiated cells which generally corresponded with a decrease in triphosphohydrolase activity and/or tetramer stability in vitro. Interestingly, no T592 mutants were able to restrict WT HIV-1 in cycling cells, despite not being regulated by phosphorylation and retaining their ability to hydrolyse dNTPs. Lowering dNTP levels by addition of hydroxyurea did not give rise to restriction. Compellingly however, HIV-1 RT mutants with reduced affinity for dNTPs were significantly restricted by wild-type and T592 mutant SAMHD1 in both cycling U937 cells and Jurkat T-cells. Restriction correlated with reverse transcription levels.
Conclusions: Altogether, we found that the amino acid at residue 592 has a strong effect on tetramer formation and, although this is not a simple "on/off" switch, this does correlate with the ability of SAMHD1 to restrict HIV-1 replication in differentiated cells. However, preventing phosphorylation of SAMHD1 and/or lowering dNTP levels by adding hydroxyurea was not enough to restore restriction in cycling cells. Nonetheless, lowering the affinity of HIV-1 RT for dNTPs, showed that restriction is mediated by dNTP levels and we were able to observe for the first time that SAMHD1 is active and capable of inhibiting HIV-1 replication in cycling cells, if the affinity of RT for dNTPs is reduced. This suggests that the very high affinity of HIV-1 RT for dNTPs prevents HIV-1 restriction by SAMHD1 in cycling cells.
{"title":"Attenuation of reverse transcriptase facilitates SAMHD1 restriction of HIV-1 in cycling cells.","authors":"Ming-Han C Tsai, Sarah J Caswell, Elizabeth R Morris, Melanie C Mann, Simon Pennell, Geoff Kelly, Harriet C T Groom, Ian A Taylor, Kate N Bishop","doi":"10.1186/s12977-023-00620-z","DOIUrl":"10.1186/s12977-023-00620-z","url":null,"abstract":"<p><strong>Background: </strong>SAMHD1 is a deoxynucleotide triphosphohydrolase that restricts replication of HIV-1 in differentiated leucocytes. HIV-1 is not restricted in cycling cells and it has been proposed that this is due to phosphorylation of SAMHD1 at T592 in these cells inactivating the enzymatic activity. To distinguish between theories for how SAMHD1 restricts HIV-1 in differentiated but not cycling cells, we analysed the effects of substitutions at T592 on restriction and dNTP levels in both cycling and differentiated cells as well as tetramer stability and enzymatic activity in vitro.</p><p><strong>Results: </strong>We first showed that HIV-1 restriction was not due to SAMHD1 nuclease activity. We then characterised a panel of SAMHD1 T592 mutants and divided them into three classes. We found that a subset of mutants lost their ability to restrict HIV-1 in differentiated cells which generally corresponded with a decrease in triphosphohydrolase activity and/or tetramer stability in vitro. Interestingly, no T592 mutants were able to restrict WT HIV-1 in cycling cells, despite not being regulated by phosphorylation and retaining their ability to hydrolyse dNTPs. Lowering dNTP levels by addition of hydroxyurea did not give rise to restriction. Compellingly however, HIV-1 RT mutants with reduced affinity for dNTPs were significantly restricted by wild-type and T592 mutant SAMHD1 in both cycling U937 cells and Jurkat T-cells. Restriction correlated with reverse transcription levels.</p><p><strong>Conclusions: </strong>Altogether, we found that the amino acid at residue 592 has a strong effect on tetramer formation and, although this is not a simple \"on/off\" switch, this does correlate with the ability of SAMHD1 to restrict HIV-1 replication in differentiated cells. However, preventing phosphorylation of SAMHD1 and/or lowering dNTP levels by adding hydroxyurea was not enough to restore restriction in cycling cells. Nonetheless, lowering the affinity of HIV-1 RT for dNTPs, showed that restriction is mediated by dNTP levels and we were able to observe for the first time that SAMHD1 is active and capable of inhibiting HIV-1 replication in cycling cells, if the affinity of RT for dNTPs is reduced. This suggests that the very high affinity of HIV-1 RT for dNTPs prevents HIV-1 restriction by SAMHD1 in cycling cells.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"5"},"PeriodicalIF":3.3,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9938269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-07DOI: 10.1186/s12977-023-00619-6
Francesca Di Nunzio, Vladimir N Uversky, Andrew J Mouland
A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.
{"title":"Biomolecular condensates: insights into early and late steps of the HIV-1 replication cycle.","authors":"Francesca Di Nunzio, Vladimir N Uversky, Andrew J Mouland","doi":"10.1186/s12977-023-00619-6","DOIUrl":"10.1186/s12977-023-00619-6","url":null,"abstract":"<p><p>A rapidly evolving understanding of phase separation in the biological and physical sciences has led to the redefining of virus-engineered replication compartments in many viruses with RNA genomes. Condensation of viral, host and genomic and subgenomic RNAs can take place to evade the innate immunity response and to help viral replication. Divergent viruses prompt liquid-liquid phase separation (LLPS) to invade the host cell. During HIV replication there are several steps involving LLPS. In this review, we characterize the ability of individual viral and host partners that assemble into biomolecular condensates (BMCs). Of note, bioinformatic analyses predict models of phase separation in line with several published observations. Importantly, viral BMCs contribute to function in key steps retroviral replication. For example, reverse transcription takes place within nuclear BMCs, called HIV-MLOs while during late replication steps, retroviral nucleocapsid acts as a driver or scaffold to recruit client viral components to aid the assembly of progeny virions. Overall, LLPS during viral infections represents a newly described biological event now appreciated in the virology field, that can also be considered as an alternative pharmacological target to current drug therapies especially when viruses become resistant to antiviral treatment.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"4"},"PeriodicalIF":2.7,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10348787","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-31DOI: 10.1186/s12977-023-00618-7
Delon Naicker, Nelson Sonela, Steven W Jin, Takalani Mulaudzi, Doty Ojwach, Tarylee Reddy, Mark A Brockman, Zabrina L Brumme, Thumbi Ndung'u, Jaclyn K Mann
Background: Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed.
Results: No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4+ T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant.
Conclusions: These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics.
{"title":"HIV-1 subtype C Nef-mediated SERINC5 down-regulation significantly contributes to overall Nef activity.","authors":"Delon Naicker, Nelson Sonela, Steven W Jin, Takalani Mulaudzi, Doty Ojwach, Tarylee Reddy, Mark A Brockman, Zabrina L Brumme, Thumbi Ndung'u, Jaclyn K Mann","doi":"10.1186/s12977-023-00618-7","DOIUrl":"https://doi.org/10.1186/s12977-023-00618-7","url":null,"abstract":"<p><strong>Background: </strong>Nef performs multiple cellular activities that enhance HIV-1 pathogenesis. The role of Nef-mediated down-regulation of the host restriction factor SERINC5 in HIV-1 pathogenesis is not well-defined. We aimed to investigate if SERINC5 down-regulation activity contributes to HIV-1 subtype C disease progression, to assess the relative contribution of this activity to overall Nef function, and to identify amino acids required for optimal activity. We measured the SERINC5 down-regulation activity of 106 subtype C Nef clones, isolated from individuals in early infection, for which the Nef activities of CD4 and HLA-I down-regulation as well as alteration of TCR signalling were previously measured. The relationship between SERINC5 down-regulation and markers of disease progression, and the relative contribution of SERINC5 down-regulation to a Nef fitness model-derived E value (a proxy for overall Nef fitness in vivo), were assessed.</p><p><strong>Results: </strong>No overall relationship was found between SERINC5 down-regulation and viral load set point (p = 0.28) or rate of CD4<sup>+</sup> T cell decline (p = 0.45). CD4 down-regulation (p = 0.02) and SERINC5 down-regulation (p = 0.003) were significant determinants of E values in univariate analyses, with the greatest relative contribution for SERINC5 down-regulation, and only SERINC5 down-regulation remained significant in the multivariate analysis (p = 0.003). Using a codon-by-codon analysis, several amino acids were significantly associated with increased (10I, 11V, 38D, 51T, 65D, 101V, 188H and, 191H) or decreased (10K, 38E, 65E, 135F, 173T, 176T and, 191R) SERINC5 down-regulation activity. Site-directed mutagenesis experiments of selected mutants confirmed a substantial reduction in SERINC5 down-regulation activity associated with the mutation 173T, while mutations 10K, 135F, and 176T were associated with more modest reductions in activity that were not statistically significant.</p><p><strong>Conclusions: </strong>These results suggest that SERINC5 down-regulation is a significant contributor to overall Nef function and identify potential genetic determinants of this Nef function that may have relevance for vaccines or therapeutics.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"3"},"PeriodicalIF":3.3,"publicationDate":"2023-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10067162/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9348905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-16DOI: 10.1186/s12977-023-00617-8
Maria Blasi, Mary Klotman
Although antiretroviral therapy (ART) has increased life expectancy in people with HIV-1 (PWH), acute and chronic kidney disease remain common in this population and are associated with poor outcomes. A broad spectrum of kidney disorders can be observed in PWH, some of which are directly related to intrarenal HIV infection and gene expression. HIV-associated nephropathy (HIVAN) was the most common kidney disease in PWH before ART became available. Animal models and human biopsy studies established the causal relationships between direct HIV-1 infection of renal epithelial cells and HIVAN, expression of viral genes in renal epithelial cells, and dysregulation of host genes involved in cell differentiation and cell cycle. In this review, we provide a summary of the body of work demonstrating HIV-1 infection of epithelial cells in the kidney and recent advancements in the understanding of viral entry mechanisms and consequences of HIV-1 gene expression in those cells.
{"title":"HIV-1 infection of renal epithelial cells: 30 years of evidence from transgenic animal models, human studies and in vitro experiments.","authors":"Maria Blasi, Mary Klotman","doi":"10.1186/s12977-023-00617-8","DOIUrl":"https://doi.org/10.1186/s12977-023-00617-8","url":null,"abstract":"<p><p>Although antiretroviral therapy (ART) has increased life expectancy in people with HIV-1 (PWH), acute and chronic kidney disease remain common in this population and are associated with poor outcomes. A broad spectrum of kidney disorders can be observed in PWH, some of which are directly related to intrarenal HIV infection and gene expression. HIV-associated nephropathy (HIVAN) was the most common kidney disease in PWH before ART became available. Animal models and human biopsy studies established the causal relationships between direct HIV-1 infection of renal epithelial cells and HIVAN, expression of viral genes in renal epithelial cells, and dysregulation of host genes involved in cell differentiation and cell cycle. In this review, we provide a summary of the body of work demonstrating HIV-1 infection of epithelial cells in the kidney and recent advancements in the understanding of viral entry mechanisms and consequences of HIV-1 gene expression in those cells.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"2"},"PeriodicalIF":3.3,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9581510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-13DOI: 10.1186/s12977-023-00616-9
Angela Wahl, Lena Al-Harthi
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
即使在抗逆转录病毒联合治疗(cART)时代,高达50%的艾滋病毒感染者(PLWH)仍受到艾滋病毒相关神经系统疾病(HAND)的影响。HIV-DNA可以在大约一半病毒血症art抑制PLWH的脑脊液(CSF)中检测到,其存在与较差的神经认知表现有关。在持续cART抑制的个体死后脑组织中也观察到HIV DNA +和HIV RNA +细胞。在这篇综述中,我们提供了HIV如何侵入大脑和HIV感染驻留的大脑胶质细胞(星形胶质细胞和小胶质细胞)的概述。我们还讨论了常驻神经胶质细胞在持续性神经炎症和PLWH中的HAND中的作用及其对HIV库的潜在贡献。可能需要针对持续感染的神经胶质细胞的HIV根除策略来实现HIV的治愈。
{"title":"HIV infection of non-classical cells in the brain.","authors":"Angela Wahl, Lena Al-Harthi","doi":"10.1186/s12977-023-00616-9","DOIUrl":"https://doi.org/10.1186/s12977-023-00616-9","url":null,"abstract":"<p><p>HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.</p>","PeriodicalId":21123,"journal":{"name":"Retrovirology","volume":"20 1","pages":"1"},"PeriodicalIF":3.3,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9840342/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9428366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}