Pub Date : 2024-10-03Print Date: 2024-11-01DOI: 10.1530/REP-24-0163
Ruth Chan-Sui, Robin E Kruger, Evelyn Cho, Vasantha Padmanabhan, Molly Moravek, Ariella Shikanov
In brief: Animal studies are needed to inform clinical guidance on the effects of testosterone gender-affirming hormone therapy (T-GAHT) on fertility. This review summarizes current animal models of T-GAHT and identifies gaps in knowledge for future study.
Abstract: Testosterone gender affirming hormone therapy (T-GAHT) is frequently used by transgender and gender-diverse individuals assigned female at birth to establish masculinizing characteristics. Although many seek parenthood, particularly as a gestational parent or through surrogacy, the current standard guidance of fertility counseling for individuals on testosterone (T) lacks clarity. At this time, individuals are typically recommended to undergo fertility preservation or stop treatment, associating T-therapy with a loss of fertility; however, there is an absence of consistent information regarding the true fertility potential for transgender and gender-diverse adults and adolescents. This review evaluates recent studies that utilize animal models of T-GAHT to relate to findings from clinical studies, with a more specific focus on fertility. Relevant literature based on murine models in post- and pre-pubertal populations has suggested reversibility of the impacts of T-GAHT, alone or following gonadotropin-releasing hormone agonist (GnRHa), on reproduction. These studies reported changes in clitoral area and ovarian morphology, including corpora lutea, follicle counts, and ovarian weights from T-treated mice. Future studies should aim to determine the impact of the duration of T-treatment and cessation on fertility outcomes, as well as establish animal models that are clinically representative of these outcomes with respect to gender diverse populations.
睾酮性别肯定激素疗法(T-GAHT)经常被出生时被指定为女性的变性人和性别多样化的人用来建立男性化特征。尽管许多人都在寻求为人父母,尤其是作为妊娠父母或通过代孕,但目前针对睾酮(T)患者的生育咨询标准指导并不明确。目前,人们通常会建议患者进行生育力保存或停止治疗,将睾酮治疗与丧失生育能力联系在一起;然而,关于变性和性别多元化成人和青少年的真正生育潜力,却缺乏一致的信息。本综述评估了近期利用 T-GAHT 动物模型进行的研究,这些研究与临床研究结果相关,并特别关注生育能力。基于青春期后和青春期前人群小鼠模型的相关文献表明,单独使用或在使用促性腺激素释放激素激动剂(GnRHa)后使用 T-GAHT 对生殖的影响是可逆的。这些研究报告了经 T 处理的小鼠阴蒂面积和卵巢形态(包括黄体、卵泡数和卵巢重量)的变化。未来的研究应旨在确定 T 治疗的持续时间和停止治疗对生育结果的影响,并建立能在临床上代表不同性别人群这些结果的动物模型。
{"title":"Reproductive Health in Trans and Gender Diverse Patients: Effects of transmasculine gender-affirming hormone therapy on future reproductive capacity: clinical data, animal models, and gaps in knowledge.","authors":"Ruth Chan-Sui, Robin E Kruger, Evelyn Cho, Vasantha Padmanabhan, Molly Moravek, Ariella Shikanov","doi":"10.1530/REP-24-0163","DOIUrl":"10.1530/REP-24-0163","url":null,"abstract":"<p><strong>In brief: </strong>Animal studies are needed to inform clinical guidance on the effects of testosterone gender-affirming hormone therapy (T-GAHT) on fertility. This review summarizes current animal models of T-GAHT and identifies gaps in knowledge for future study.</p><p><strong>Abstract: </strong>Testosterone gender affirming hormone therapy (T-GAHT) is frequently used by transgender and gender-diverse individuals assigned female at birth to establish masculinizing characteristics. Although many seek parenthood, particularly as a gestational parent or through surrogacy, the current standard guidance of fertility counseling for individuals on testosterone (T) lacks clarity. At this time, individuals are typically recommended to undergo fertility preservation or stop treatment, associating T-therapy with a loss of fertility; however, there is an absence of consistent information regarding the true fertility potential for transgender and gender-diverse adults and adolescents. This review evaluates recent studies that utilize animal models of T-GAHT to relate to findings from clinical studies, with a more specific focus on fertility. Relevant literature based on murine models in post- and pre-pubertal populations has suggested reversibility of the impacts of T-GAHT, alone or following gonadotropin-releasing hormone agonist (GnRHa), on reproduction. These studies reported changes in clitoral area and ovarian morphology, including corpora lutea, follicle counts, and ovarian weights from T-treated mice. Future studies should aim to determine the impact of the duration of T-treatment and cessation on fertility outcomes, as well as establish animal models that are clinically representative of these outcomes with respect to gender diverse populations.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11449632/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142073800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sexual reproduction-from both physiological and behavioral perspectives-is dependent upon appropriate connections between a diverse, hormone-modulated network of neural regions. Importantly, these substrates are regulated by hormones across the lifespan from early development to adulthood, making them targets of endocrine-disrupting chemicals (EDCs). Rodents, such as mice and rats, are invaluable to the characterization of EDCs because of their sex-specific, stereotyped appetitive and consummatory reproductive behaviors. Phthalates, bisphenol A (BPA), and EDC mixtures pose a salient risk to the health of humans, wildlife, and livestock because these synthetic compounds are ubiquitous due to their widespread use in mass production of consumer and industrial goods. This review outlines how the hypothalamic-pituitary-gonadal axis regulates male and female sexual behaviors, and how phthalates and BPA can perturb appetitive and consummatory behaviors and impact neural substrates that modulate reproductive behavior. We will then discuss how to progress toward a clearer understanding of the reproductive and neurobiological changes that occur due to EDC exposure.
从生理和行为的角度来看,有性生殖都依赖于一个由多种激素调控的神经区域网络之间的适当连接。重要的是,这些基质在从早期发育到成年的整个生命周期中都会受到激素的调节,从而成为干扰内分泌的化学物质(EDCs)的目标。小鼠和大鼠等啮齿类动物具有性别特异性、刻板的食欲和消耗性生殖行为,因此是研究 EDCs 特性的宝贵材料。邻苯二甲酸盐、双酚 A (BPA) 和 EDC 混合物对人类、野生动物和家畜的健康构成了突出的风险,因为这些合成化合物广泛用于消费品和工业品的大规模生产,无处不在。本综述概述了下丘脑-垂体-性腺轴如何调节男性和女性的性行为,以及邻苯二甲酸盐和双酚 A 如何扰乱食欲和消耗行为并影响调节生殖行为的神经基质。然后,我们将讨论如何更清楚地了解因暴露于 EDC 而导致的生殖和神经生物学变化。
{"title":"Rodent reproductive behavior among males and females after exposure to endocrine-disrupting chemicals.","authors":"Jacob R Maxon, Megan M Mahoney","doi":"10.1530/REP-24-0145","DOIUrl":"https://doi.org/10.1530/REP-24-0145","url":null,"abstract":"<p><p>Sexual reproduction-from both physiological and behavioral perspectives-is dependent upon appropriate connections between a diverse, hormone-modulated network of neural regions. Importantly, these substrates are regulated by hormones across the lifespan from early development to adulthood, making them targets of endocrine-disrupting chemicals (EDCs). Rodents, such as mice and rats, are invaluable to the characterization of EDCs because of their sex-specific, stereotyped appetitive and consummatory reproductive behaviors. Phthalates, bisphenol A (BPA), and EDC mixtures pose a salient risk to the health of humans, wildlife, and livestock because these synthetic compounds are ubiquitous due to their widespread use in mass production of consumer and industrial goods. This review outlines how the hypothalamic-pituitary-gonadal axis regulates male and female sexual behaviors, and how phthalates and BPA can perturb appetitive and consummatory behaviors and impact neural substrates that modulate reproductive behavior. We will then discuss how to progress toward a clearer understanding of the reproductive and neurobiological changes that occur due to EDC exposure.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matheus P De Cesaro, Mariana P de Macedo, Paulo R A da Rosa, Joabel T Dos Santos, Ricardo D Mea, Janduí E da Nóbrega, Raj Duggavathi, Bernardo G Gasperin, Paulo Bayard D Gonçalves, Vilceu Bordignon
The significant role of C-type natriuretic peptide (CNP) and its receptor 2 (NPR2) in regulating oocyte meiotic maturation and facilitating communication between oocytes and surrounding cumulus cells has been well-documented in various mammalian species, including mice, cattle and swine. However, further investigation is needed to ascertain whether natriuretic peptide receptors (NPRs) are involved in regulating other essential ovarian functions. Hence, this study aimed to explore the potential involvement of NPRs in the regulation of cumulus expansion and oocyte meiotic maturation in bovine cumulus-oocyte complexes (COCs). The findings revealed that NPR3 mRNA abundance was downregulated by FSH and LH in cumulus cells of bovine COCs during in vitro maturation (IVM), while NPR2 mRNA levels were not affected by gonadotropins. Inhibition of the epidermal growth factor receptor (EGFR) during IVM of COCs prevented the NPR3 mRNA downregulation induced by gonadotropins in cumulus cells. Additionally, treatment of COCs during IVM with an NPR3 agonist (cANP4-23) inhibited cumulus expansion induced by gonadotropins. This inhibitory effect was further intensified when COCs were co-treated with cANP4-23 and CNP. These findings provide robust evidence indicating that normal cumulus expansion in bovine COCs involves an inhibitory effect of gonadotropins on NPR3 mRNA expression, which is mediated via EGFR signaling. The study also provides evidence that CNP and NPR3 interact synergistically to regulate cumulus expansion in response to gonadotropins.
{"title":"NPR3 is regulated by gonadotropins and modulates bovine cumulus cell expansion.","authors":"Matheus P De Cesaro, Mariana P de Macedo, Paulo R A da Rosa, Joabel T Dos Santos, Ricardo D Mea, Janduí E da Nóbrega, Raj Duggavathi, Bernardo G Gasperin, Paulo Bayard D Gonçalves, Vilceu Bordignon","doi":"10.1530/REP-24-0187","DOIUrl":"https://doi.org/10.1530/REP-24-0187","url":null,"abstract":"<p><p>The significant role of C-type natriuretic peptide (CNP) and its receptor 2 (NPR2) in regulating oocyte meiotic maturation and facilitating communication between oocytes and surrounding cumulus cells has been well-documented in various mammalian species, including mice, cattle and swine. However, further investigation is needed to ascertain whether natriuretic peptide receptors (NPRs) are involved in regulating other essential ovarian functions. Hence, this study aimed to explore the potential involvement of NPRs in the regulation of cumulus expansion and oocyte meiotic maturation in bovine cumulus-oocyte complexes (COCs). The findings revealed that NPR3 mRNA abundance was downregulated by FSH and LH in cumulus cells of bovine COCs during in vitro maturation (IVM), while NPR2 mRNA levels were not affected by gonadotropins. Inhibition of the epidermal growth factor receptor (EGFR) during IVM of COCs prevented the NPR3 mRNA downregulation induced by gonadotropins in cumulus cells. Additionally, treatment of COCs during IVM with an NPR3 agonist (cANP4-23) inhibited cumulus expansion induced by gonadotropins. This inhibitory effect was further intensified when COCs were co-treated with cANP4-23 and CNP. These findings provide robust evidence indicating that normal cumulus expansion in bovine COCs involves an inhibitory effect of gonadotropins on NPR3 mRNA expression, which is mediated via EGFR signaling. The study also provides evidence that CNP and NPR3 interact synergistically to regulate cumulus expansion in response to gonadotropins.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Exposure to endocrine-disrupting chemicals (EDCs) and pharmaceuticals during development has been linked to reproductive dysfunction, reduced semen quality, and infertility. Research indicates that EDC mixtures, which are common in the modern environment, can pose significant risks that may not be fully assessed by studying individual compound toxicity, especially at environmentally relevant doses or concentrations. Understanding the contribution of chemical mixtures to male reproductive toxicity is crucial, given the increasing reliance on pharmaceuticals and pervasiveness of anthropogenic pollution. Recent studies on EDC effects have expanded to a more diverse range of microplastics, pesticides, antimicrobials, phytoestrogens, and pharmaceuticals such as analgesics, which can collectively impact testicular function and fertility. Adverse outcomes observed across studies include reproductive tract malformations, decreased sperm count and motility, lowered testosterone, delayed-onset puberty, and possible causal effects such as oxidative stress and altered gene expression. Still, limited data exists on combinations of environmental pollutants and pharmaceuticals with ED potential at human-relevant doses. This review of the recent literature aims to synthesize the toxicological impact of low dose chemical mixtures on male reproductive health. Overall, humans are exposed to EDCs and drugs through various ways, necessitating an understanding of their concomitant effects on male reproductive health.
在发育过程中接触干扰内分泌的化学品(EDCs)和药物与生殖功能障碍、精液质量下降和不育症有关。研究表明,现代环境中常见的 EDC 混合物可能会带来重大风险,而研究单个化合物的毒性,尤其是在环境相关剂量或浓度下的毒性,可能无法全面评估这些风险。鉴于人们对药物的依赖性越来越强,人为污染越来越普遍,了解化学混合物对男性生殖毒性的影响至关重要。最近有关 EDC 影响的研究已扩展到更多种类的微塑料、杀虫剂、抗菌剂、植物雌激素和药物(如镇痛剂),这些物质可共同影响睾丸功能和生育能力。各项研究观察到的不良后果包括生殖道畸形、精子数量和活力下降、睾酮降低、青春期延迟,以及氧化应激和基因表达改变等可能的因果效应。尽管如此,关于环境污染物和药物的组合在人体相关剂量下可能产生 ED 的数据仍然有限。这篇最新文献综述旨在总结低剂量化学混合物对男性生殖健康的毒理学影响。总之,人类通过各种途径接触到 EDCs 和药物,因此有必要了解它们对男性生殖健康的影响。
{"title":"IMPACT OF HUMAN-RELEVANT DOSES OF ENDOCRINE DISRUPTING CHEMICAL AND DRUG MIXTURES ON TESTIS DEVELOPMENT AND FUNCTION.","authors":"Nicole Mohajer, Martine Culty","doi":"10.1530/REP-24-0155","DOIUrl":"https://doi.org/10.1530/REP-24-0155","url":null,"abstract":"<p><p>Exposure to endocrine-disrupting chemicals (EDCs) and pharmaceuticals during development has been linked to reproductive dysfunction, reduced semen quality, and infertility. Research indicates that EDC mixtures, which are common in the modern environment, can pose significant risks that may not be fully assessed by studying individual compound toxicity, especially at environmentally relevant doses or concentrations. Understanding the contribution of chemical mixtures to male reproductive toxicity is crucial, given the increasing reliance on pharmaceuticals and pervasiveness of anthropogenic pollution. Recent studies on EDC effects have expanded to a more diverse range of microplastics, pesticides, antimicrobials, phytoestrogens, and pharmaceuticals such as analgesics, which can collectively impact testicular function and fertility. Adverse outcomes observed across studies include reproductive tract malformations, decreased sperm count and motility, lowered testosterone, delayed-onset puberty, and possible causal effects such as oxidative stress and altered gene expression. Still, limited data exists on combinations of environmental pollutants and pharmaceuticals with ED potential at human-relevant doses. This review of the recent literature aims to synthesize the toxicological impact of low dose chemical mixtures on male reproductive health. Overall, humans are exposed to EDCs and drugs through various ways, necessitating an understanding of their concomitant effects on male reproductive health.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Particulate matter (PM) air pollution consists of liquid and solid particles, which are categorized by size as less than 10 (PM10) μm, 2.5 (PM2.5) μm, or 0.1μm (PM0.1 or ultrafine) in aerodynamic diameter and which vary in composition depending on the sources. PM exposure is ubiquitous and has been associated with many adverse health effects. This narrative review focuses on epidemiological and experimental studies that investigated the effects of PM exposure on female and male reproduction and on pregnancy.μ.
{"title":"Adverse impacts of particulate matter air pollution on female and male reproductive function.","authors":"Ulrike Luderer","doi":"10.1530/REP-24-0194","DOIUrl":"https://doi.org/10.1530/REP-24-0194","url":null,"abstract":"<p><p>Particulate matter (PM) air pollution consists of liquid and solid particles, which are categorized by size as less than 10 (PM10) μm, 2.5 (PM2.5) μm, or 0.1μm (PM0.1 or ultrafine) in aerodynamic diameter and which vary in composition depending on the sources. PM exposure is ubiquitous and has been associated with many adverse health effects. This narrative review focuses on epidemiological and experimental studies that investigated the effects of PM exposure on female and male reproduction and on pregnancy.μ.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ovulation is the process by which a fertilizable oocyte is extruded from the interior of the follicle. Herein, we conducted a literature survey to explore the ovulation patterns of eleven sexually reproducing species belonging to 10 animal phyla. These results indicate a large variety of ovulation patterns. Further comparative biological and evolutionary considerations of these results led us to conclude that most female animals ovulate via follicle rupture. We propose that in all animals that ovulate by follicle rupture, two cellular events may be critically involved in the process: 1) the disintegration of cell junctional systems that lead to intracellular cytoskeleton rearrangement in the follicle cells and 2) the degradation of extracellular matrix (ECM) proteins filling between follicle cells. These events may result in follicular cell deformation and increased motility, both of which are necessary for the formation of a path through which oocytes escape from the follicle. In addition to the requirement of ECM degradation for disintegrating cell junctions, intensive ECM protein degradation at the apical region of the follicle probably became increasingly important in late-evolving animals, such as vertebrates, in which a thick follicle wall containing a large abundance of ECM proteins is formed. We also considered hypothetical scenarios for the evolution of ovulation in these animals. Furthermore, this article discusses the future problems that need to be solved for a more comprehensive understanding of ovulation in the animal kingdom.
{"title":"An attempt to search for the common cellular mechanism of ovulation across all metazoans: A review.","authors":"Takayuki Takahashi, Katsueki Ogiwara","doi":"10.1530/REP-24-0184","DOIUrl":"https://doi.org/10.1530/REP-24-0184","url":null,"abstract":"<p><p>Ovulation is the process by which a fertilizable oocyte is extruded from the interior of the follicle. Herein, we conducted a literature survey to explore the ovulation patterns of eleven sexually reproducing species belonging to 10 animal phyla. These results indicate a large variety of ovulation patterns. Further comparative biological and evolutionary considerations of these results led us to conclude that most female animals ovulate via follicle rupture. We propose that in all animals that ovulate by follicle rupture, two cellular events may be critically involved in the process: 1) the disintegration of cell junctional systems that lead to intracellular cytoskeleton rearrangement in the follicle cells and 2) the degradation of extracellular matrix (ECM) proteins filling between follicle cells. These events may result in follicular cell deformation and increased motility, both of which are necessary for the formation of a path through which oocytes escape from the follicle. In addition to the requirement of ECM degradation for disintegrating cell junctions, intensive ECM protein degradation at the apical region of the follicle probably became increasingly important in late-evolving animals, such as vertebrates, in which a thick follicle wall containing a large abundance of ECM proteins is formed. We also considered hypothetical scenarios for the evolution of ovulation in these animals. Furthermore, this article discusses the future problems that need to be solved for a more comprehensive understanding of ovulation in the animal kingdom.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yan Gu, Ning Song, Long Yang, Yan Shi, Hao-Ran Xu, Ya-Wei Xin, Ling-Han Chen, Wen-Wen Gu, Jian Wang
Placenta-associated pathologies, including early pregnancy loss (EPL) and preeclampsia (PE), share a common phenomenon of insufficient extravillous trophoblasts (EVTs) invasion. It was previously observed that down-regulated miR-486-5p expression inhibited the invasion of EVTs, and a decreased peripheral miR-486-5p was associated with EPL. However, the exact roles of miR-486-5p played in pathogenesis of EPL, as well as the molecular pathway underlying roles of miR-486-5p in EVTs invasion, remains poorly understood. In this study, a decreased miR-486-5p expression in uterine embryo implantation site at gestation day (GD) 8.5, and an increased expression of Smad2, a target of miR-486-5p, were observed in the lipopolysaccharide (LPS)-induced EPL mouse model. The invasion and viability of immortalized human EVTs line, HTR-8/SVneo, were inhibited by LPS, accompanied with a reduced miR-486-5p expression. LPS showed a promoting effect on the Smad2 expression, of which could be attenuated by miR-486-5p mimics. And the down-regulated Smad2 could effectively restore the impaired invasion and viability of HTR-8/SVneo cells caused by LPS or miR-486-5p inhibitor. Furthermore, LPS could promote the TNFα production in HTR-8/SVneo cells, whereas both of siSmad and miR-486-5p mimics could reverse such an effect. By analyzing the human decidua single-cell RNA sequencing and transcriptome datasets derived from the Gene Expression Omnibus, it was found that, compared to control early pregnant women, the Smad2 expression was significantly increased in recurrent miscarriages (RM) patients. Collectively, these data suggested that, decreased miR-486-5p expression might lead to EPL at least partially by inhibiting invasion and/or promoting TNFα production of EVTs via targeting Smad2.
{"title":"Decreased miR-486-5p is involved in LPS-induced HTR-8/SVneo cell dysfunction by promoting Smad2 expression.","authors":"Yan Gu, Ning Song, Long Yang, Yan Shi, Hao-Ran Xu, Ya-Wei Xin, Ling-Han Chen, Wen-Wen Gu, Jian Wang","doi":"10.1530/REP-23-0502","DOIUrl":"https://doi.org/10.1530/REP-23-0502","url":null,"abstract":"<p><p>Placenta-associated pathologies, including early pregnancy loss (EPL) and preeclampsia (PE), share a common phenomenon of insufficient extravillous trophoblasts (EVTs) invasion. It was previously observed that down-regulated miR-486-5p expression inhibited the invasion of EVTs, and a decreased peripheral miR-486-5p was associated with EPL. However, the exact roles of miR-486-5p played in pathogenesis of EPL, as well as the molecular pathway underlying roles of miR-486-5p in EVTs invasion, remains poorly understood. In this study, a decreased miR-486-5p expression in uterine embryo implantation site at gestation day (GD) 8.5, and an increased expression of Smad2, a target of miR-486-5p, were observed in the lipopolysaccharide (LPS)-induced EPL mouse model. The invasion and viability of immortalized human EVTs line, HTR-8/SVneo, were inhibited by LPS, accompanied with a reduced miR-486-5p expression. LPS showed a promoting effect on the Smad2 expression, of which could be attenuated by miR-486-5p mimics. And the down-regulated Smad2 could effectively restore the impaired invasion and viability of HTR-8/SVneo cells caused by LPS or miR-486-5p inhibitor. Furthermore, LPS could promote the TNFα production in HTR-8/SVneo cells, whereas both of siSmad and miR-486-5p mimics could reverse such an effect. By analyzing the human decidua single-cell RNA sequencing and transcriptome datasets derived from the Gene Expression Omnibus, it was found that, compared to control early pregnant women, the Smad2 expression was significantly increased in recurrent miscarriages (RM) patients. Collectively, these data suggested that, decreased miR-486-5p expression might lead to EPL at least partially by inhibiting invasion and/or promoting TNFα production of EVTs via targeting Smad2.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Years of growing research demonstrate that transgender and gender diverse (TGD) people desire fertility counseling and family building, however social and medical factors can impact future fertility options. Fortunately, TGD individuals have many viable options for family building using their own gametes and/or reproductive organs. However, the nuanced ways in which different gender affirming treatments affect reproduction, the interplay with non-treatment related infertility factors, and mitigation of likely dysphoria triggers are all critical to actual utilization. This review focuses on fertility treatment and preservation options for TGD patients and highlights these influential social and medical factors. Fertility treatments may be associated with worsening gender dysphoria in TGD people, and an affirming clinical environment and conscientious provider approach is paramount to treatment success. However, reducing gender dysphoria can also require specific changes to medically assisted reproduction and sperm collection protocols, some which carry the potential for diminished outcomes or unknown effects. Adolescents undergoing fertility preservation treatments may need more support or additional protocol modifications, and outcomes may be poorer in this age group compared with adults. Testicular and ovarian tissue cryopreservation may present a fertility preservation option for prepubertal TGD children, however in-vitro gamete maturation remains experimental in this situation.
{"title":"Fertility Treatment and Preservation Options for Transgender and Gender Diverse People.","authors":"Elizabeth Rubin, Marissa Palmor, Paula Amato","doi":"10.1530/REP-24-0120","DOIUrl":"https://doi.org/10.1530/REP-24-0120","url":null,"abstract":"<p><p>Years of growing research demonstrate that transgender and gender diverse (TGD) people desire fertility counseling and family building, however social and medical factors can impact future fertility options. Fortunately, TGD individuals have many viable options for family building using their own gametes and/or reproductive organs. However, the nuanced ways in which different gender affirming treatments affect reproduction, the interplay with non-treatment related infertility factors, and mitigation of likely dysphoria triggers are all critical to actual utilization. This review focuses on fertility treatment and preservation options for TGD patients and highlights these influential social and medical factors. Fertility treatments may be associated with worsening gender dysphoria in TGD people, and an affirming clinical environment and conscientious provider approach is paramount to treatment success. However, reducing gender dysphoria can also require specific changes to medically assisted reproduction and sperm collection protocols, some which carry the potential for diminished outcomes or unknown effects. Adolescents undergoing fertility preservation treatments may need more support or additional protocol modifications, and outcomes may be poorer in this age group compared with adults. Testicular and ovarian tissue cryopreservation may present a fertility preservation option for prepubertal TGD children, however in-vitro gamete maturation remains experimental in this situation.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The histone variant TH2B, enriched in oocytes, sperm, and early embryos, decreases as embryos differentiate into pre-gastrula stages. Despite its presence, the role of TH2B in epigenetic reprogramming during early embryonic development remains largely under-researched. Our study employed ultra-low-input ChIP-seq (ULI-ChIP) to analyze the genome-wide distribution of TH2B in MII oocytes and early embryos. We found that TH2B is enriched in the chromatin of oocytes and 2-cell stage embryos but becomes less prevalent after the 2-cell stage. Correlation analysis revealed that the TH2B chromatin patterns in sperm and preimplantation embryos are more similar to each other than to those in MII oocytes. Gene ontology (GO) analysis of TH2B-occupied loci linked them to various developmental processes, including oogenesis, fertilization, chromatin modification, and transcription regulation. The study also identified a strong association of TH2B with specific transposable elements (TEs), particularly long terminal repeats (LTRs), which are known to regulate preimplantation development. Additionally, early embryos showed H3K9me3 marks at TH2B-bound loci. TH2B exhibited strong correlations with H2A.Z and H3.3 in the 2-cell and 8-cell stages, a positive association with H3K27Ac and H3K4me3, and a negative correlation with H3K27me3. Allelic reprogramming analysis of TH2B in embryos from C57BL/6J and DBA/2J crosses revealed differential dynamics between maternal and paternal alleles, with a notable paternal bias at the promoter in 2-cell embryos. Thus, TH2B's enrichment in early embryonic stages and its association with key regulatory regions and histone modifications underscore its importance in ZGA and subsequent developmental processes.
{"title":"Genome-wide profiling the epigenetic landscape of histone variant TH2B in murine oocytes and pre-implantation embryos.","authors":"Isha Singh, Priyanka Parte","doi":"10.1530/REP-24-0035","DOIUrl":"https://doi.org/10.1530/REP-24-0035","url":null,"abstract":"<p><p>The histone variant TH2B, enriched in oocytes, sperm, and early embryos, decreases as embryos differentiate into pre-gastrula stages. Despite its presence, the role of TH2B in epigenetic reprogramming during early embryonic development remains largely under-researched. Our study employed ultra-low-input ChIP-seq (ULI-ChIP) to analyze the genome-wide distribution of TH2B in MII oocytes and early embryos. We found that TH2B is enriched in the chromatin of oocytes and 2-cell stage embryos but becomes less prevalent after the 2-cell stage. Correlation analysis revealed that the TH2B chromatin patterns in sperm and preimplantation embryos are more similar to each other than to those in MII oocytes. Gene ontology (GO) analysis of TH2B-occupied loci linked them to various developmental processes, including oogenesis, fertilization, chromatin modification, and transcription regulation. The study also identified a strong association of TH2B with specific transposable elements (TEs), particularly long terminal repeats (LTRs), which are known to regulate preimplantation development. Additionally, early embryos showed H3K9me3 marks at TH2B-bound loci. TH2B exhibited strong correlations with H2A.Z and H3.3 in the 2-cell and 8-cell stages, a positive association with H3K27Ac and H3K4me3, and a negative correlation with H3K27me3. Allelic reprogramming analysis of TH2B in embryos from C57BL/6J and DBA/2J crosses revealed differential dynamics between maternal and paternal alleles, with a notable paternal bias at the promoter in 2-cell embryos. Thus, TH2B's enrichment in early embryonic stages and its association with key regulatory regions and histone modifications underscore its importance in ZGA and subsequent developmental processes.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142506926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain-derived neurotrophic factor (BDNF) is a peptide widely known for its role in neurogenesis and synaptic plasticity. Its expression in non-neuronal tissues has been reported. In mammals, it is involved in ovarian development, follicle growth, oocyte maturation, and early embryonic development. In zebrafish, it was demonstrated that BDNF increases food intake and regulates metabolism. Reproduction and metabolism are tightly linked. We hypothesized that BDNF modulates reproductive hormones and reproductive functions in zebrafish. This study aimed to determine BDNF expression in the zebrafish reproductive axis and whether it modulates the reproductive endocrine milieu and oocyte biology in zebrafish. Our results show that bdnf and its receptor trkb, and BDNF-like immunoreactivity are detected in zebrafish gonads and liver cells. This suggests BDNF local production and possible actions within the gonads and liver. Intraperitoneal administration of 1, 10, or 100 ng/g bodyweight BDNF significantly (ANOVA, p<0.05) increased sgnrh/cgnrh-II, kiss1, and cyp19a1b mRNAs in the zebrafish brain; steroidogenic enzymes (star and cyp19a1a) and key receptors in the zebrafish gonads. In vitro incubation of zebrafish liver cells with BDNF significantly (ANOVA, p<0.05) increased estrogen receptor mRNAs and vitellogenin concentrations (ELISA) in the cells. BDNF (100 ng/mL) induced (ANOVA, p<0.05) oocyte maturation in vitro at 24 hours post-incubation and significantly upregulated cumulus-expansion related genes (ANOVA, p<0.05). Overall, our findings indicate a stimulatory role for BDNF in the reproductive axis of zebrafish. This provides impetus for future research on its mechanism of action and potential practical applications to enhance reproduction in aquaculture.
{"title":"Brain Derived Neurotrophic Factor Stimulates Hypothalamic and Gonadal Reproductive Hormones and Oocyte Maturation in Zebrafish.","authors":"Chinelo Uju, Katayoon Karimzadeh, Suraj Unniappan","doi":"10.1530/REP-24-0233","DOIUrl":"https://doi.org/10.1530/REP-24-0233","url":null,"abstract":"<p><p>Brain-derived neurotrophic factor (BDNF) is a peptide widely known for its role in neurogenesis and synaptic plasticity. Its expression in non-neuronal tissues has been reported. In mammals, it is involved in ovarian development, follicle growth, oocyte maturation, and early embryonic development. In zebrafish, it was demonstrated that BDNF increases food intake and regulates metabolism. Reproduction and metabolism are tightly linked. We hypothesized that BDNF modulates reproductive hormones and reproductive functions in zebrafish. This study aimed to determine BDNF expression in the zebrafish reproductive axis and whether it modulates the reproductive endocrine milieu and oocyte biology in zebrafish. Our results show that bdnf and its receptor trkb, and BDNF-like immunoreactivity are detected in zebrafish gonads and liver cells. This suggests BDNF local production and possible actions within the gonads and liver. Intraperitoneal administration of 1, 10, or 100 ng/g bodyweight BDNF significantly (ANOVA, p<0.05) increased sgnrh/cgnrh-II, kiss1, and cyp19a1b mRNAs in the zebrafish brain; steroidogenic enzymes (star and cyp19a1a) and key receptors in the zebrafish gonads. In vitro incubation of zebrafish liver cells with BDNF significantly (ANOVA, p<0.05) increased estrogen receptor mRNAs and vitellogenin concentrations (ELISA) in the cells. BDNF (100 ng/mL) induced (ANOVA, p<0.05) oocyte maturation in vitro at 24 hours post-incubation and significantly upregulated cumulus-expansion related genes (ANOVA, p<0.05). Overall, our findings indicate a stimulatory role for BDNF in the reproductive axis of zebrafish. This provides impetus for future research on its mechanism of action and potential practical applications to enhance reproduction in aquaculture.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142547039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}