Pub Date : 2020-12-07DOI: 10.1109/iCAST51195.2020.9319489
Kungan Zeng, Incheon Paik
Neural machine translation (NMT) goes through rapid development because of the application of various deep learning techs. Especially, how to construct a more effective structure of NMT attracts more and more attention. Transformer is a state-of-the-art architecture in NMT. It replies on the self-attention mechanism exactly instead of recurrent neural networks (RNN). The Multi-head attention is a crucial part that implements the self-attention mechanism, and it also dramatically affects the scale of the model. In this paper, we present a new Multi-head attention by combining convolution operation. In comparison with the base Transformer, our approach can reduce the number of parameters effectively. And we perform a reasoned experiment. The result shows that the performance of the new model is similar to the base model.
{"title":"A Lightweight Transformer with Convolutional Attention","authors":"Kungan Zeng, Incheon Paik","doi":"10.1109/iCAST51195.2020.9319489","DOIUrl":"https://doi.org/10.1109/iCAST51195.2020.9319489","url":null,"abstract":"Neural machine translation (NMT) goes through rapid development because of the application of various deep learning techs. Especially, how to construct a more effective structure of NMT attracts more and more attention. Transformer is a state-of-the-art architecture in NMT. It replies on the self-attention mechanism exactly instead of recurrent neural networks (RNN). The Multi-head attention is a crucial part that implements the self-attention mechanism, and it also dramatically affects the scale of the model. In this paper, we present a new Multi-head attention by combining convolution operation. In comparison with the base Transformer, our approach can reduce the number of parameters effectively. And we perform a reasoned experiment. The result shows that the performance of the new model is similar to the base model.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115620871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}