首页 > 最新文献

2020 16th European Dependable Computing Conference (EDCC)最新文献

英文 中文
Improving Dependability of Neuromorphic Computing With Non-Volatile Memory 利用非易失性存储器提高神经形态计算的可靠性
Pub Date : 2020-06-10 DOI: 10.1109/EDCC51268.2020.00013
Shihao Song, Anup Das, Nagarajan Kandasamy
As process technology continues to scale aggressively, circuit aging in a neuromorphic hardware due to negative bias temperature instability (NBTI) and time-dependent dielectric breakdown (TDDB) is becoming a critical reliability issue and is expected to proliferate when using non-volatile memory (NVM) for synaptic storage. This is because NVM devices require high voltages and currents to access their synaptic weights, which further accelerate the circuit aging in neuromorphic hardware. Current methods for qualifying reliability are overly conservative, since they estimate circuit aging considering worst-case operating conditions and unnecessarily constrain performance. This paper proposes RENEU, a reliability-oriented approach to map machine learning applications to neuromorphic hardware, with the aim of improving system-wide reliability, without compromising key performance metrics such as execution time of these applications on the hardware. Fundamental to RENEU is a novel formulation of the aging of CMOS-based circuits in a neuromorphic hardware considering different failure mechanisms. Using this formulation, RENEU develops a system- wide reliability model which can be used inside a design-space exploration framework involving the mapping of neurons and synapses to the hardware. To this end, RENEU uses an instance of Particle Swarm Optimization (PSO) to generate mappings that are Pareto-optimal in terms of performance and reliability. We evaluate RENEU using different machine learning applications on a state-of-the-art neuromorphic hardware with NVM synapses. Our results demonstrate an average 38% reduction in circuit aging, leading to an average 18% improvement in the lifetime of the hardware compared to current practices. RENEU only introduces a marginal performance overhead of 5% compared to a performance-oriented state-of-the-art.
随着工艺技术的不断发展,由于负偏置温度不稳定性(NBTI)和时间相关介质击穿(TDDB),神经形态硬件中的电路老化正在成为一个关键的可靠性问题,并且在使用非易失性存储器(NVM)进行突触存储时,预计会激增。这是因为NVM设备需要高电压和高电流来访问它们的突触权重,这进一步加速了神经形态硬件中的电路老化。目前确定可靠性的方法过于保守,因为它们在估计电路老化时考虑了最坏的工作条件,不必要地限制了性能。本文提出了RENEU,一种面向可靠性的方法,将机器学习应用映射到神经形态硬件,目的是提高系统范围的可靠性,而不影响这些应用在硬件上的执行时间等关键性能指标。RENEU的基础是在神经形态硬件中考虑不同失效机制的基于cmos电路老化的新公式。使用这个公式,RENEU开发了一个系统范围的可靠性模型,该模型可以在设计空间探索框架中使用,涉及神经元和突触到硬件的映射。为此,RENEU使用粒子群优化(PSO)实例来生成在性能和可靠性方面都是帕累托最优的映射。我们在具有NVM突触的最先进的神经形态硬件上使用不同的机器学习应用程序来评估RENEU。我们的研究结果表明,与目前的做法相比,电路老化平均降低了38%,硬件寿命平均提高了18%。与面向性能的最新技术相比,RENEU只引入了5%的边际性能开销。
{"title":"Improving Dependability of Neuromorphic Computing With Non-Volatile Memory","authors":"Shihao Song, Anup Das, Nagarajan Kandasamy","doi":"10.1109/EDCC51268.2020.00013","DOIUrl":"https://doi.org/10.1109/EDCC51268.2020.00013","url":null,"abstract":"As process technology continues to scale aggressively, circuit aging in a neuromorphic hardware due to negative bias temperature instability (NBTI) and time-dependent dielectric breakdown (TDDB) is becoming a critical reliability issue and is expected to proliferate when using non-volatile memory (NVM) for synaptic storage. This is because NVM devices require high voltages and currents to access their synaptic weights, which further accelerate the circuit aging in neuromorphic hardware. Current methods for qualifying reliability are overly conservative, since they estimate circuit aging considering worst-case operating conditions and unnecessarily constrain performance. This paper proposes RENEU, a reliability-oriented approach to map machine learning applications to neuromorphic hardware, with the aim of improving system-wide reliability, without compromising key performance metrics such as execution time of these applications on the hardware. Fundamental to RENEU is a novel formulation of the aging of CMOS-based circuits in a neuromorphic hardware considering different failure mechanisms. Using this formulation, RENEU develops a system- wide reliability model which can be used inside a design-space exploration framework involving the mapping of neurons and synapses to the hardware. To this end, RENEU uses an instance of Particle Swarm Optimization (PSO) to generate mappings that are Pareto-optimal in terms of performance and reliability. We evaluate RENEU using different machine learning applications on a state-of-the-art neuromorphic hardware with NVM synapses. Our results demonstrate an average 38% reduction in circuit aging, leading to an average 18% improvement in the lifetime of the hardware compared to current practices. RENEU only introduces a marginal performance overhead of 5% compared to a performance-oriented state-of-the-art.","PeriodicalId":212573,"journal":{"name":"2020 16th European Dependable Computing Conference (EDCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129580234","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 25
Steering Committee 指导委员会
Pub Date : 2018-07-01 DOI: 10.1109/usnc-ursi.2018.8602510
Naveen Sharma, Soonwook Hwang
Members Tarek Abdelzaher, University of Illinois at Urbana-Champaign, USA Betty Cheng, Michigan State University, USA Ada Diaconescu, Telecom ParisTech, France Yixin Diao, IBM Research Simon Dobson, University of St Andrews, Scotland Holger Giese, Hasso Plattner Institute, Germany Soonwook Hwang, Korea Inst. of Science and Technology Information, South Korea Michael Kozuch, Intel, USA Philippe Lalanda, University of Grenoble, France Daniel Menasce, George Mason University, USA Arif Merchant, Google, USA Dejan Milojicic, HP Labs, USA Manish Parashar, Rutgers University, USA Hartmut Schmeck, Karlsruhe Institute of Technology, Germany Alan Sill, Texas Tech University, USA Vladimir Vlassov, KTH Royal Institute of Technology, Sweden Xiaoyun Zhu, Huawei, USA
成员Tarek Abdelzaher、美国伊利诺伊大学香槟分校Betty Cheng、密歇根州立大学、美国Ada Diaconescu、巴黎高科电信、法国diyixin Diao、IBM研究院Simon Dobson、圣安德鲁斯大学、苏格兰Holger Giese、Hasso Plattner研究所、德国Soonwook Hwang、韩国科学技术信息研究所、韩国Michael Kozuch、英特尔、美国Philippe Lalanda、格勒诺布尔大学、法国Daniel Menasce、乔治梅森大学、美国Arif Merchant、谷歌,美国Dejan Milojicic,惠普实验室,美国Manish Parashar,罗格斯大学,美国Hartmut Schmeck,卡尔斯鲁厄理工学院,德国Alan Sill,德克萨斯理工大学,美国Vladimir Vlassov,瑞典KTH皇家理工学院,瑞典朱晓云,美国华为
{"title":"Steering Committee","authors":"Naveen Sharma, Soonwook Hwang","doi":"10.1109/usnc-ursi.2018.8602510","DOIUrl":"https://doi.org/10.1109/usnc-ursi.2018.8602510","url":null,"abstract":"Members Tarek Abdelzaher, University of Illinois at Urbana-Champaign, USA Betty Cheng, Michigan State University, USA Ada Diaconescu, Telecom ParisTech, France Yixin Diao, IBM Research Simon Dobson, University of St Andrews, Scotland Holger Giese, Hasso Plattner Institute, Germany Soonwook Hwang, Korea Inst. of Science and Technology Information, South Korea Michael Kozuch, Intel, USA Philippe Lalanda, University of Grenoble, France Daniel Menasce, George Mason University, USA Arif Merchant, Google, USA Dejan Milojicic, HP Labs, USA Manish Parashar, Rutgers University, USA Hartmut Schmeck, Karlsruhe Institute of Technology, Germany Alan Sill, Texas Tech University, USA Vladimir Vlassov, KTH Royal Institute of Technology, Sweden Xiaoyun Zhu, Huawei, USA","PeriodicalId":212573,"journal":{"name":"2020 16th European Dependable Computing Conference (EDCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115399043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2020 16th European Dependable Computing Conference (EDCC)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1