{"title":"Experimental Study on the Fracture Process Zones and Fracture Characteristics of Coal and Rocks in Coal Beds","authors":"Zaiyong Wang, Haojie Lian, Weiguo Liang, Pengfei Wu, Wenda Li, Yongjun Yu","doi":"10.1007/s00603-023-03620-9","DOIUrl":"https://doi.org/10.1007/s00603-023-03620-9","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"61 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135037568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-11DOI: 10.1007/s00603-023-03618-3
Carlos Plúa, Minh Ngoc Vu, Rémi de La Vaissière, Gilles Armand
{"title":"In Situ Thermal Hydrofracturing Behavior of the Callovo-Oxfordian Claystone within the Context of the Deep Geological Disposal of Radioactive Waste in France","authors":"Carlos Plúa, Minh Ngoc Vu, Rémi de La Vaissière, Gilles Armand","doi":"10.1007/s00603-023-03618-3","DOIUrl":"https://doi.org/10.1007/s00603-023-03618-3","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"13 17","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135087207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-11DOI: 10.1007/s00603-023-03614-7
Ke Ma, Fuqiang Ren, Han Wang, Limin Li, Di Wu
{"title":"Dynamic Mechanical Responses and Freezing Strengthening Mechanism of Frozen Sandstone with Single Flaw: Insights from Drop Weight Tests and Numerical Simulation","authors":"Ke Ma, Fuqiang Ren, Han Wang, Limin Li, Di Wu","doi":"10.1007/s00603-023-03614-7","DOIUrl":"https://doi.org/10.1007/s00603-023-03614-7","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"5 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1007/s00603-023-03610-x
Wenzhuo Cao, Ru Zhang, Xiaofang Nie, Li Ren
{"title":"Laboratory Fracture Slip and Seismicity Subjected to Fluid Injection-Related Stress and Pressure Paths","authors":"Wenzhuo Cao, Ru Zhang, Xiaofang Nie, Li Ren","doi":"10.1007/s00603-023-03610-x","DOIUrl":"https://doi.org/10.1007/s00603-023-03610-x","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"54 s266","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341645","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-08DOI: 10.1007/s00603-023-03619-2
Hao Li, Ruizhi Zhong, Leo Pel, David Smeulders, Zhenjiang You
Abstract The crack initiation stress threshold ( $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> ) is an essential parameter in the brittle failure process of rocks. In this paper, a volumetric strain response method (VSRM) is proposed to determine the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> based on two new concepts, i.e., the dilatancy resistance state index ( $${delta }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> ) and the maximum value of the dilatancy resistance state index difference ( $$left|{Delta delta }_{mathrm{ci}}right|$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:msub> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>δ</mml:mi> </mml:mrow> <mml:mi>ci</mml:mi> </mml:msub> </mml:mfenced> </mml:math> ), which represent the state of dilatancy resistance of the rock and the shear sliding resistance capacity of the crack-like pores during the compressive period, respectively. The deviatoric stress corresponding to the maximum $$left|{Delta delta }_{mathrm{ci}}right|$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mfenced> <mml:msub> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>δ</mml:mi> </mml:mrow> <mml:mi>ci</mml:mi> </mml:msub> </mml:mfenced> </mml:math> is taken as the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> . We then examine the feasibility and validity of the VSRM using the experimental results. The results from the VSRM are also compared with those calculated by other strain-based methods, including the volumetric strain method (VSM), crack volumetric strain method (CVSM), lateral strain method (LSM) and lateral strain response method (LSRM). Compared with the other methods, the VSRM is effective and reduces subjectivity when determining the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> . Finally, with the help of the proposed VSRM, influences from chemical corrosion and confining stress on the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> and $${Delta delta }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>δ</mml:mi> </mml:mrow> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> of the carbonate rock are analyzed. This study provides a subjective and practical method for determining $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msu
{"title":"A New Volumetric Strain-Based Method for Determining the Crack Initiation Threshold of Rocks Under Compression","authors":"Hao Li, Ruizhi Zhong, Leo Pel, David Smeulders, Zhenjiang You","doi":"10.1007/s00603-023-03619-2","DOIUrl":"https://doi.org/10.1007/s00603-023-03619-2","url":null,"abstract":"Abstract The crack initiation stress threshold ( $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> ) is an essential parameter in the brittle failure process of rocks. In this paper, a volumetric strain response method (VSRM) is proposed to determine the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> based on two new concepts, i.e., the dilatancy resistance state index ( $${delta }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>δ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> ) and the maximum value of the dilatancy resistance state index difference ( $$left|{Delta delta }_{mathrm{ci}}right|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfenced> <mml:msub> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>δ</mml:mi> </mml:mrow> <mml:mi>ci</mml:mi> </mml:msub> </mml:mfenced> </mml:math> ), which represent the state of dilatancy resistance of the rock and the shear sliding resistance capacity of the crack-like pores during the compressive period, respectively. The deviatoric stress corresponding to the maximum $$left|{Delta delta }_{mathrm{ci}}right|$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mfenced> <mml:msub> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>δ</mml:mi> </mml:mrow> <mml:mi>ci</mml:mi> </mml:msub> </mml:mfenced> </mml:math> is taken as the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> . We then examine the feasibility and validity of the VSRM using the experimental results. The results from the VSRM are also compared with those calculated by other strain-based methods, including the volumetric strain method (VSM), crack volumetric strain method (CVSM), lateral strain method (LSM) and lateral strain response method (LSRM). Compared with the other methods, the VSRM is effective and reduces subjectivity when determining the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> . Finally, with the help of the proposed VSRM, influences from chemical corrosion and confining stress on the $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>σ</mml:mi> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> and $${Delta delta }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>δ</mml:mi> </mml:mrow> <mml:mi>ci</mml:mi> </mml:msub> </mml:math> of the carbonate rock are analyzed. This study provides a subjective and practical method for determining $${sigma }_{mathrm{ci}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msu","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"226 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135341476","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Novel Mixed-Mode Power Exponent Cohesive Zone Model for FDEM and Its Application to Tunnel Excavation in the Layered Rock Mass","authors":"Ping Liu, Quansheng Liu, Penghai Deng, Yin Bo, Xianqi Xie","doi":"10.1007/s00603-023-03599-3","DOIUrl":"https://doi.org/10.1007/s00603-023-03599-3","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"26 12","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135476789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.1007/s00603-023-03605-8
Mingwen Wang, Gang Luo, Zhaowei Chen, Chao Fang
{"title":"Stability Analysis of Salt Structure Drilling and Its Application to the Keshen 10 Block of Kuqa Depression in Tarim Basin","authors":"Mingwen Wang, Gang Luo, Zhaowei Chen, Chao Fang","doi":"10.1007/s00603-023-03605-8","DOIUrl":"https://doi.org/10.1007/s00603-023-03605-8","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"21 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135678962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-06DOI: 10.1007/s00603-023-03607-6
Bak Kong Low, Chia Weng Boon
Abstract The efficiency of the first-order reliability method (FORM) and the accuracy of Monte Carlo simulations (MCS) are coupled in probability-based designs of reinforced rock slopes, including a Hong Kong slope with exfoliation joints. Load–resistance duality is demonstrated and resolved automatically in a foundation on rock with a discontinuity plane. Other examples include the lengthy Hoek and Bray deterministic vectorial procedure for comprehensive pentahedral blocks with external load and bolt force, which is made efficient and more succinct before extending it to probability-based design via MCS-enhanced FORM. The FORM–MCS–FORM design procedure is proposed for cases with multiple failure modes. For cases with a dominant single failure mode, the time-saving importance sampling (IS) and the fast second-order reliability method (SORM) can be used in lieu of MCS. Two cases of 3D reinforced blocks (pentahedral and tetrahedral, respectively) with the possibility of multiple sliding modes are investigated. In the case of the reinforced pentahedral block, direct MCS shows that there is only one dominant failure mode, for which the efficient method of importance sampling at the FORM design point provides fast verification of the revised design. In the case of the reinforced tetrahedral block, there are multiple failure modes contributing to the total failure probability, for which the proposed MCS-enhanced FORM procedure is demonstrated to be essential. Comparisons are made between Excel MCS and MATLAB MCS.
{"title":"Probability-Based Design of Reinforced Rock Slopes Using Coupled FORM and Monte Carlo Methods","authors":"Bak Kong Low, Chia Weng Boon","doi":"10.1007/s00603-023-03607-6","DOIUrl":"https://doi.org/10.1007/s00603-023-03607-6","url":null,"abstract":"Abstract The efficiency of the first-order reliability method (FORM) and the accuracy of Monte Carlo simulations (MCS) are coupled in probability-based designs of reinforced rock slopes, including a Hong Kong slope with exfoliation joints. Load–resistance duality is demonstrated and resolved automatically in a foundation on rock with a discontinuity plane. Other examples include the lengthy Hoek and Bray deterministic vectorial procedure for comprehensive pentahedral blocks with external load and bolt force, which is made efficient and more succinct before extending it to probability-based design via MCS-enhanced FORM. The FORM–MCS–FORM design procedure is proposed for cases with multiple failure modes. For cases with a dominant single failure mode, the time-saving importance sampling (IS) and the fast second-order reliability method (SORM) can be used in lieu of MCS. Two cases of 3D reinforced blocks (pentahedral and tetrahedral, respectively) with the possibility of multiple sliding modes are investigated. In the case of the reinforced pentahedral block, direct MCS shows that there is only one dominant failure mode, for which the efficient method of importance sampling at the FORM design point provides fast verification of the revised design. In the case of the reinforced tetrahedral block, there are multiple failure modes contributing to the total failure probability, for which the proposed MCS-enhanced FORM procedure is demonstrated to be essential. Comparisons are made between Excel MCS and MATLAB MCS.","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"9 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135635318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-05DOI: 10.1007/s00603-023-03580-0
Ying-Quan Guo, Da Huang, Ya-Li Li
{"title":"Effects of Undulation and Stress on the Shear Mechanical Behavior of Saw-Toothed Discontinuities Under Unloading Normal Stress","authors":"Ying-Quan Guo, Da Huang, Ya-Li Li","doi":"10.1007/s00603-023-03580-0","DOIUrl":"https://doi.org/10.1007/s00603-023-03580-0","url":null,"abstract":"","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"2 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135725146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-04DOI: 10.1007/s00603-023-03509-7
Alexandros N. Nordas, Alice Brauchart, Maria Anthi, Georgios Anagnostou
Abstract Nagra, the cooperative for developing and implementing a long-term radioactive waste depository in Switzerland, identified Opalinus Clay as the most suitable host rock for deep geological containment. This paper deals with those features of Opalinus Clay that are important for the design and construction of the underground structures. Consolidated drained (CD) and consolidated undrained (CU) triaxial compression tests on specimens from deep boreholes revealed that Opalinus Clay exhibits pronounced stiffness and strength anisotropy, dependency of stiffness on the initial confining pressure, slightly non-linear pre-failure stress–strain behaviour, and a drop in axial resistance after a certain amount of shearing. Within the scope of establishing a rigorous—yet practical—design approach for the repository tunnels and caverns, the simplest possible constitutive model capable of reproducing the main aspects of the Opalinus Clay behaviour is adopted. The non-associated linear elastic and perfectly plastic MC model is chosen as a starting point, on account of its wide use in tunnel engineering practice, its simplicity, and the clear physical meaning of its parameters. This paper presents a systematic and robust calibration method for an extended version of this model, which considers the pronounced strength and stiffness anisotropy of Opalinus Clay. The paper additionally provides the full suite of the equations that describe the model behaviour under triaxial CU or CD testing conditions and for any bedding orientation relative to the specimen axis. The equations are employed to determine ranges of material constants for two varieties of Opalinus Clay, based upon the results of 73 CU and CD tests. A thorough comparison between the model predictions and the experimental response is conducted, to demonstrate the versatility and limitations of the constitutive model and of the proposed calibration approach.
{"title":"Calibration Method and Material Constants of an Anisotropic, Linearly Elastic and Perfectly Plastic Mohr–Coulomb Constitutive Model for Opalinus Clay","authors":"Alexandros N. Nordas, Alice Brauchart, Maria Anthi, Georgios Anagnostou","doi":"10.1007/s00603-023-03509-7","DOIUrl":"https://doi.org/10.1007/s00603-023-03509-7","url":null,"abstract":"Abstract Nagra, the cooperative for developing and implementing a long-term radioactive waste depository in Switzerland, identified Opalinus Clay as the most suitable host rock for deep geological containment. This paper deals with those features of Opalinus Clay that are important for the design and construction of the underground structures. Consolidated drained (CD) and consolidated undrained (CU) triaxial compression tests on specimens from deep boreholes revealed that Opalinus Clay exhibits pronounced stiffness and strength anisotropy, dependency of stiffness on the initial confining pressure, slightly non-linear pre-failure stress–strain behaviour, and a drop in axial resistance after a certain amount of shearing. Within the scope of establishing a rigorous—yet practical—design approach for the repository tunnels and caverns, the simplest possible constitutive model capable of reproducing the main aspects of the Opalinus Clay behaviour is adopted. The non-associated linear elastic and perfectly plastic MC model is chosen as a starting point, on account of its wide use in tunnel engineering practice, its simplicity, and the clear physical meaning of its parameters. This paper presents a systematic and robust calibration method for an extended version of this model, which considers the pronounced strength and stiffness anisotropy of Opalinus Clay. The paper additionally provides the full suite of the equations that describe the model behaviour under triaxial CU or CD testing conditions and for any bedding orientation relative to the specimen axis. The equations are employed to determine ranges of material constants for two varieties of Opalinus Clay, based upon the results of 73 CU and CD tests. A thorough comparison between the model predictions and the experimental response is conducted, to demonstrate the versatility and limitations of the constitutive model and of the proposed calibration approach.","PeriodicalId":21280,"journal":{"name":"Rock Mechanics and Rock Engineering","volume":"5 5","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135774228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}