The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.
{"title":"Keeping Data Private while Computing in the Cloud","authors":"Yuriy Brun, N. Medvidović","doi":"10.1109/CLOUD.2012.126","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.126","url":null,"abstract":"The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129037721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Seibold, A. Wolke, Martina-Cezara Albutiu, M. Bichler, A. Kemper, Thomas Setzer
Running emerging main-memory database systems within virtual machines causes huge overhead, because these systems are highly optimized to get the most out of bare metal servers. But running these systems on bare metal servers results in low resource utilization, because database servers often have to be sized for peak loads, much higher than the average load. Instead, we propose to deploy them within light-weight containers that allow to control resource usage and to make use of spare resources by temporarily running other applications on the database server using virtual machines (VMs). The servers on which these VMs would normally run can be suspended, to save energy costs. But current database systems do not handle dynamic changes to resource allocation well and accurate estimates on resource demand are required to maintain SLAs. We focus on emerging main-memory database systems that support the mixed workloads of today's business intelligence applications and propose an cooperative approach in which the DBMS communicates its resource demand, gets informed about currently assigned resources and adapts its resource usage accordingly. We analyze the performance impact on the database system when spare resources are used by VMs and monitor SLA compliance.
{"title":"Efficient Deployment of Main-Memory DBMS in Virtualized Data Centers","authors":"Michael Seibold, A. Wolke, Martina-Cezara Albutiu, M. Bichler, A. Kemper, Thomas Setzer","doi":"10.1109/CLOUD.2012.13","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.13","url":null,"abstract":"Running emerging main-memory database systems within virtual machines causes huge overhead, because these systems are highly optimized to get the most out of bare metal servers. But running these systems on bare metal servers results in low resource utilization, because database servers often have to be sized for peak loads, much higher than the average load. Instead, we propose to deploy them within light-weight containers that allow to control resource usage and to make use of spare resources by temporarily running other applications on the database server using virtual machines (VMs). The servers on which these VMs would normally run can be suspended, to save energy costs. But current database systems do not handle dynamic changes to resource allocation well and accurate estimates on resource demand are required to maintain SLAs. We focus on emerging main-memory database systems that support the mixed workloads of today's business intelligence applications and propose an cooperative approach in which the DBMS communicates its resource demand, gets informed about currently assigned resources and adapts its resource usage accordingly. We analyze the performance impact on the database system when spare resources are used by VMs and monitor SLA compliance.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129554060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cloud-based software applications (Software as a Service - SaaS) for multi-tenant provisioning have become a major development paradigm in Web engineering. Instead of serving a single end-user, a multi-tenant SaaS provides multiple end-users with the same functionality but with potentially different quality-of-service (QoS) values. The service selection for such a SaaS is a complex decision-making process which involves a number of stakeholders with different QoS requirements. SaaS developers need to compose services with different QoS values to meet end-users' different multidimensional QoS constraints for the SaaS. Furthermore, they also need to satisfy SaaS providers' optimisation goals for the SaaS, such as least resource cost and best system performance. Existing QoS-aware service selection approaches are oriented at a single tenant. They do not consider the characteristics of multi-tenant SaaS and hence are ineffective and inefficient when applied to compose multi-tenant SaaS. In this paper, we introduce a novel QoS-driven approach for helping SaaS developers select the services for composing multi-tenant SaaS, which achieves SaaS providers' optimisation goals while fulfilling the end-users' different levels of QoS constraints. The proposed approach is evaluated using an example SaaS synthetically generated based on a dataset of real-world Web services. Experimental results show that our approach significantly outperforms existing approaches in terms of both effectiveness and performance.
{"title":"QoS-Driven Service Selection for Multi-tenant SaaS","authors":"Qiang He, Jun Han, Yun Yang, J. Grundy, Hai Jin","doi":"10.1109/CLOUD.2012.125","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.125","url":null,"abstract":"Cloud-based software applications (Software as a Service - SaaS) for multi-tenant provisioning have become a major development paradigm in Web engineering. Instead of serving a single end-user, a multi-tenant SaaS provides multiple end-users with the same functionality but with potentially different quality-of-service (QoS) values. The service selection for such a SaaS is a complex decision-making process which involves a number of stakeholders with different QoS requirements. SaaS developers need to compose services with different QoS values to meet end-users' different multidimensional QoS constraints for the SaaS. Furthermore, they also need to satisfy SaaS providers' optimisation goals for the SaaS, such as least resource cost and best system performance. Existing QoS-aware service selection approaches are oriented at a single tenant. They do not consider the characteristics of multi-tenant SaaS and hence are ineffective and inefficient when applied to compose multi-tenant SaaS. In this paper, we introduce a novel QoS-driven approach for helping SaaS developers select the services for composing multi-tenant SaaS, which achieves SaaS providers' optimisation goals while fulfilling the end-users' different levels of QoS constraints. The proposed approach is evaluated using an example SaaS synthetically generated based on a dataset of real-world Web services. Experimental results show that our approach significantly outperforms existing approaches in terms of both effectiveness and performance.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114282134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cloud service providers are constantly looking for ways to increase revenue and reduce costs either by reducing capacity requirements or by supporting more users without adding capacity. Over-commit of physical resources, without adding more capacity, is one such approach. Workloads that tend to be 'peaky' are especially attractive targets for over-commit since only occasionally such workloads use all the system resources that they are entitled to. Online identification of candidate workloads and quantification of risks are two key issues associated with over-committing resources. In this paper, to estimate the risks associated with over-commit, we describe a mechanism based on the statistical analysis of the aggregate resource usage behavior of a group of workloads. Using CPU usage data collected from an internal private Cloud, we show that our proposed approach is effective and practical.
{"title":"Biting Off Safely More Than You Can Chew: Predictive Analytics for Resource Over-Commit in IaaS Cloud","authors":"R. Ghosh, V. Naik","doi":"10.1109/CLOUD.2012.131","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.131","url":null,"abstract":"Cloud service providers are constantly looking for ways to increase revenue and reduce costs either by reducing capacity requirements or by supporting more users without adding capacity. Over-commit of physical resources, without adding more capacity, is one such approach. Workloads that tend to be 'peaky' are especially attractive targets for over-commit since only occasionally such workloads use all the system resources that they are entitled to. Online identification of candidate workloads and quantification of risks are two key issues associated with over-committing resources. In this paper, to estimate the risks associated with over-commit, we describe a mechanism based on the statistical analysis of the aggregate resource usage behavior of a group of workloads. Using CPU usage data collected from an internal private Cloud, we show that our proposed approach is effective and practical.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117156779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
MapReduce programming model is widely used for large scale and one-time data-intensive distributed computing, but lacks flexibility and efficiency of processing small incremental data. IncMR framework is proposed in this paper for incrementally processing new data of a large data set, which takes state as implicit input and combines it with new data. Map tasks are created according to new splits instead of entire splits while reduce tasks fetch their inputs including the state and the intermediate results of new map tasks from designate nodes or local nodes. Data locality is considered as one of the main optimization means for job scheduling. It is implemented based on Hadoop, compatible with the original MapReduce interfaces and transparent to users. Experiments show that non-iterative algorithms running in MapReduce framework can be migrated to IncMR directly to get efficient incremental and continuous processing without any modification. IncMR is competitive and in all studied cases runs faster than that processing the entire data set.
{"title":"IncMR: Incremental Data Processing Based on MapReduce","authors":"Cairong Yan, Xin Yang, Ze Yu, Min Li, Xiaolin Li","doi":"10.1109/CLOUD.2012.67","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.67","url":null,"abstract":"MapReduce programming model is widely used for large scale and one-time data-intensive distributed computing, but lacks flexibility and efficiency of processing small incremental data. IncMR framework is proposed in this paper for incrementally processing new data of a large data set, which takes state as implicit input and combines it with new data. Map tasks are created according to new splits instead of entire splits while reduce tasks fetch their inputs including the state and the intermediate results of new map tasks from designate nodes or local nodes. Data locality is considered as one of the main optimization means for job scheduling. It is implemented based on Hadoop, compatible with the original MapReduce interfaces and transparent to users. Experiments show that non-iterative algorithms running in MapReduce framework can be migrated to IncMR directly to get efficient incremental and continuous processing without any modification. IncMR is competitive and in all studied cases runs faster than that processing the entire data set.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117297848","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kleopatra G. Konstanteli, T. Cucinotta, Konstantinos Psychas, T. Varvarigou
This paper presents an admission control test for deciding whether or not it is worth to admit a set of services into a Cloud, and in case of acceptance, obtain the optimum allocation for each of the components that comprise the services. In the proposed model, the focus is on hosting elastic services the resource requirements of which may dynamically grow and shrink, depending on the dynamically varying number of users and patterns of requests. In finding the optimum allocation, the presented admission control test uses an optimization model, which incorporates business rules in terms of trust, eco-efficiency and cost, and also takes into account affinity rules the components that comprise the service may have. The problem is modeled on the General Algebraic Modeling System (GAMS) and solved under realistic provider's settings that demonstrate the efficiency of the proposed method.
{"title":"Admission Control for Elastic Cloud Services","authors":"Kleopatra G. Konstanteli, T. Cucinotta, Konstantinos Psychas, T. Varvarigou","doi":"10.1109/CLOUD.2012.63","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.63","url":null,"abstract":"This paper presents an admission control test for deciding whether or not it is worth to admit a set of services into a Cloud, and in case of acceptance, obtain the optimum allocation for each of the components that comprise the services. In the proposed model, the focus is on hosting elastic services the resource requirements of which may dynamically grow and shrink, depending on the dynamically varying number of users and patterns of requests. In finding the optimum allocation, the presented admission control test uses an optimization model, which incorporates business rules in terms of trust, eco-efficiency and cost, and also takes into account affinity rules the components that comprise the service may have. The problem is modeled on the General Algebraic Modeling System (GAMS) and solved under realistic provider's settings that demonstrate the efficiency of the proposed method.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115661176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chris Benninger, S. Neville, Y. Yazir, Chris Matthews, Y. Coady
Despite defensive advances, malicious software (malware) remains an ever present cyber-security threat. Cloud environments are far from malware immune, in that: i) they innately support the execution of remotely supplied code, and ii) escaping their virtual machine (VM) confines has proven relatively easy to achieve in practice. The growing interest in clouds by industries and governments is also creating a core need to be able to formally address cloud security and privacy issues. VM introspection provides one of the core cyber-security tools for analyzing the run-time behaviors of code. Traditionally, introspection approaches have required close integration with the underlying hypervisors and substantial re-engineering when OS updates and patches are applied. Such heavy-weight introspection techniques, therefore, are too invasive to fit well within modern commercial clouds. Instead, lighter-weight introspection techniques are required that provide the same levels of within-VM observability but without the tight hypervisor and OS patch-level integration. This work introduces Maitland as a prototype proof-of-concept implementation a lighter-weight introspection tool, which exploits paravirtualization to meet these end-goals. The work assesses Maitland's performance, highlights its use to perform packer-independent malware detection, and assesses whether, with further optimizations, Maitland could provide a viable approach for introspection in commercial clouds.
{"title":"Maitland: Lighter-Weight VM Introspection to Support Cyber-security in the Cloud","authors":"Chris Benninger, S. Neville, Y. Yazir, Chris Matthews, Y. Coady","doi":"10.1109/CLOUD.2012.145","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.145","url":null,"abstract":"Despite defensive advances, malicious software (malware) remains an ever present cyber-security threat. Cloud environments are far from malware immune, in that: i) they innately support the execution of remotely supplied code, and ii) escaping their virtual machine (VM) confines has proven relatively easy to achieve in practice. The growing interest in clouds by industries and governments is also creating a core need to be able to formally address cloud security and privacy issues. VM introspection provides one of the core cyber-security tools for analyzing the run-time behaviors of code. Traditionally, introspection approaches have required close integration with the underlying hypervisors and substantial re-engineering when OS updates and patches are applied. Such heavy-weight introspection techniques, therefore, are too invasive to fit well within modern commercial clouds. Instead, lighter-weight introspection techniques are required that provide the same levels of within-VM observability but without the tight hypervisor and OS patch-level integration. This work introduces Maitland as a prototype proof-of-concept implementation a lighter-weight introspection tool, which exploits paravirtualization to meet these end-goals. The work assesses Maitland's performance, highlights its use to perform packer-independent malware detection, and assesses whether, with further optimizations, Maitland could provide a viable approach for introspection in commercial clouds.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114338961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Much effort in the current literature has been put towards methods and implementations to solve Resource Consolidation Management (RCM) problems in the cloud setting. A vast number of proposed solutions appears to be designed for different variants of the RCM problem. This makes the comparison of approaches challenging. We propose a new framework that facilitates mapping RCM solutions to their RCM problem definitions. Our framework allows a solution to be assigned to its RCM problem definition by means of answering a set of questions specific to RCM problems. Our framework can be used to (1) specify problem descriptions, (2) establish optimal solutions and providing theoretical benchmarks, (3) provide a platform allowing formal complexity analysis of RCM problems and (4) facilitate a healthy discussion about the essence of RCM and evaluations of different solutions. We show how our proposed framework can be applied in form of case studies depicting four approaches from the literature.
{"title":"A Framework for Classification of Resource Consolidation Management Problems","authors":"S. Lonergan, Y. Yazir, U. Stege","doi":"10.1109/CLOUD.2012.114","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.114","url":null,"abstract":"Much effort in the current literature has been put towards methods and implementations to solve Resource Consolidation Management (RCM) problems in the cloud setting. A vast number of proposed solutions appears to be designed for different variants of the RCM problem. This makes the comparison of approaches challenging. We propose a new framework that facilitates mapping RCM solutions to their RCM problem definitions. Our framework allows a solution to be assigned to its RCM problem definition by means of answering a set of questions specific to RCM problems. Our framework can be used to (1) specify problem descriptions, (2) establish optimal solutions and providing theoretical benchmarks, (3) provide a platform allowing formal complexity analysis of RCM problems and (4) facilitate a healthy discussion about the essence of RCM and evaluations of different solutions. We show how our proposed framework can be applied in form of case studies depicting four approaches from the literature.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115711415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maintaining the state of applications and user sessions is difficult in large scale web-based software systems. This problem is particularly accentuated in the context of Cloud computing as Cloud providers, especially Platform as a Service (PaaS) vendors, do not explicitly support state management infrastructure - such as clustering. In a PaaS environment, a user has little or no access and control over the server platform and session management layer. Additionally, the platform tiers are generally loosely coupled and service-oriented. These make traditional session-state management techniques non-usable. In this work, we present ReLoC - a session-state management architecture for Cloud that uses loosely-coupled services and platform agnostic scalable messaging technology to propagate and save session states. Preliminary experiments show a very high level of tolerance to failures of the platform tiers without corresponding disruptions in user sessions. We argue that, in the context of PaaS Clouds, ReLoC architecture will be more scalable compared to traditional clustering environments.
{"title":"ReLoC: A Resilient Loosely Coupled Application Architecture for State Management in the Cloud","authors":"V. Sharma, Shubhashis Sengupta, K. Annervaz","doi":"10.1109/CLOUD.2012.130","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.130","url":null,"abstract":"Maintaining the state of applications and user sessions is difficult in large scale web-based software systems. This problem is particularly accentuated in the context of Cloud computing as Cloud providers, especially Platform as a Service (PaaS) vendors, do not explicitly support state management infrastructure - such as clustering. In a PaaS environment, a user has little or no access and control over the server platform and session management layer. Additionally, the platform tiers are generally loosely coupled and service-oriented. These make traditional session-state management techniques non-usable. In this work, we present ReLoC - a session-state management architecture for Cloud that uses loosely-coupled services and platform agnostic scalable messaging technology to propagate and save session states. Preliminary experiments show a very high level of tolerance to failures of the platform tiers without corresponding disruptions in user sessions. We argue that, in the context of PaaS Clouds, ReLoC architecture will be more scalable compared to traditional clustering environments.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123258606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Malkowski, Yasuhiko Kanemasa, Hanwei Chen, Masao Yamamoto, Qingyang Wang, D. Jayasinghe, C. Pu, Motoyuki Kawaba
A central goal of cloud computing is high resource utilization through hardware sharing; however, utilization often remains modest in practice due to the challenges in predicting consolidated application performance accurately. We present a thorough experimental study of consolidated n-tier application performance at high utilization to address this issue through reproducible measurements. Our experimental method illustrates opportunities for increasing operational efficiency by making consolidated application performance more predictable in high utilization scenarios. The main focus of this paper are non-trivial dependencies between SLA-critical response time degradation effects and software configurations (i.e., readily available tuning knobs). Methodologically, we directly measure and analyze the resource utilizations, request rates, and performance of two consolidated n-tier application benchmark systems (RUBBoS) in an enterprise-level computer virtualization environment. We find that monotonically increasing the workload of an n-tier application system may unexpectedly spike the overall response time of another co-located system by 300 percent despite stable throughput. Based on these findings, we derive a software configuration best-practice to mitigate such non-monotonic response time variations by enabling higher request-processing concurrency (e.g., more threads) in all tiers. More generally, this experimental study increases our quantitative understanding of the challenges and opportunities in the widely used (but seldom supported, quantified, or even mentioned) hypothesis that applications consolidate with linear performance in cloud environments.
{"title":"Challenges and Opportunities in Consolidation at High Resource Utilization: Non-monotonic Response Time Variations in n-Tier Applications","authors":"Simon Malkowski, Yasuhiko Kanemasa, Hanwei Chen, Masao Yamamoto, Qingyang Wang, D. Jayasinghe, C. Pu, Motoyuki Kawaba","doi":"10.1109/CLOUD.2012.99","DOIUrl":"https://doi.org/10.1109/CLOUD.2012.99","url":null,"abstract":"A central goal of cloud computing is high resource utilization through hardware sharing; however, utilization often remains modest in practice due to the challenges in predicting consolidated application performance accurately. We present a thorough experimental study of consolidated n-tier application performance at high utilization to address this issue through reproducible measurements. Our experimental method illustrates opportunities for increasing operational efficiency by making consolidated application performance more predictable in high utilization scenarios. The main focus of this paper are non-trivial dependencies between SLA-critical response time degradation effects and software configurations (i.e., readily available tuning knobs). Methodologically, we directly measure and analyze the resource utilizations, request rates, and performance of two consolidated n-tier application benchmark systems (RUBBoS) in an enterprise-level computer virtualization environment. We find that monotonically increasing the workload of an n-tier application system may unexpectedly spike the overall response time of another co-located system by 300 percent despite stable throughput. Based on these findings, we derive a software configuration best-practice to mitigate such non-monotonic response time variations by enabling higher request-processing concurrency (e.g., more threads) in all tiers. More generally, this experimental study increases our quantitative understanding of the challenges and opportunities in the widely used (but seldom supported, quantified, or even mentioned) hypothesis that applications consolidate with linear performance in cloud environments.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123645116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}