Pub Date : 2023-10-18eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2265431
Yusuke Kozuka, Taisuke T Sasaki, Terumasa Tadano, Jun Fujioka
Topological insulators and semimetals are an interesting class of materials for new electronic and optical applications owing to their characteristic electromagnetic responses originating from the spin-orbit coupled band structures. However, topological electronic structures are rare in oxide materials despite their chemical stability being preferable for applications. In this study, given the theoretical prediction of Dirac bands in CaPd3O4, we investigate the fabrication and transport properties of SrPd3O4 and CaPd3O4 thin films as candidates of oxide Dirac semimetals. We have found that these materials are epitaxially grown on MgO (100) substrate under limited growth conditions by pulsed laser deposition. The transport properties show a weak temperature dependence, suggestive of narrow-gap properties, although unintentionally doped holes hinder us from revealing the presence of the Dirac band. Our study establishes the basic thermodynamics of thin-film fabrication of these materials and will lead to interesting properties characteristic of topological band structure by modulating the electronic structure by, for example, chemical substitutions or pressure.
{"title":"Epitaxy and transport properties of alkali-earth palladate thin films.","authors":"Yusuke Kozuka, Taisuke T Sasaki, Terumasa Tadano, Jun Fujioka","doi":"10.1080/14686996.2023.2265431","DOIUrl":"10.1080/14686996.2023.2265431","url":null,"abstract":"<p><p>Topological insulators and semimetals are an interesting class of materials for new electronic and optical applications owing to their characteristic electromagnetic responses originating from the spin-orbit coupled band structures. However, topological electronic structures are rare in oxide materials despite their chemical stability being preferable for applications. In this study, given the theoretical prediction of Dirac bands in CaPd<sub>3</sub>O<sub>4</sub>, we investigate the fabrication and transport properties of SrPd<sub>3</sub>O<sub>4</sub> and CaPd<sub>3</sub>O<sub>4</sub> thin films as candidates of oxide Dirac semimetals. We have found that these materials are epitaxially grown on MgO (100) substrate under limited growth conditions by pulsed laser deposition. The transport properties show a weak temperature dependence, suggestive of narrow-gap properties, although unintentionally doped holes hinder us from revealing the presence of the Dirac band. Our study establishes the basic thermodynamics of thin-film fabrication of these materials and will lead to interesting properties characteristic of topological band structure by modulating the electronic structure by, for example, chemical substitutions or pressure.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2265431"},"PeriodicalIF":7.4,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586081/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-18eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2265434
Hongxin Wang, Han Zhang, Ryo Tamura, Bo Da, Shimaa A Abdellatef, Ikumu Watanabe, Nobuyuki Ishida, Daisuke Fujita, Nobutaka Hanagata, Tomoki Nakagawa, Jun Nakanishi
The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces. In this work, we mapped these intracellular forces at a whole-cell scale and with submicron resolution to correlate intracellular force distribution to the cytoskeletal structures. Furthermore, we visualized dynamic mechanical responses of the cells adapting to environmental modulations in situ. Such task was achieved by using an informatics-assisted atomic force microscope (AFM) indentation technique where a key step was Markov-chain Monte Carlo optimization to search for both the models used to fit indentation force-displacement curves and probe geometry descriptors. We demonstrated force dynamics within cytoskeleton, as well as nucleoskeleton in living cells which were subjected to mechanical state modulation: myosin motor inhibition, micro-compression stimulation and geometrical confinement manipulation. Our results highlight the alteration in the intracellular prestress to attenuate environmental stimuli; to involve in cellular survival against mechanical signal-initiated death during cancer growth and metastasis; and to initiate cell migration.
{"title":"Mapping stress inside living cells by atomic force microscopy in response to environmental stimuli.","authors":"Hongxin Wang, Han Zhang, Ryo Tamura, Bo Da, Shimaa A Abdellatef, Ikumu Watanabe, Nobuyuki Ishida, Daisuke Fujita, Nobutaka Hanagata, Tomoki Nakagawa, Jun Nakanishi","doi":"10.1080/14686996.2023.2265434","DOIUrl":"10.1080/14686996.2023.2265434","url":null,"abstract":"<p><p>The response of cells to environmental stimuli, under either physiological or pathological conditions, plays a key role in determining cell fate toward either adaptive survival or controlled death. The efficiency of such a feedback mechanism is closely related to the most challenging human diseases, including cancer. Since cellular responses are implemented through physical forces exerted on intracellular components, more detailed knowledge of force distribution through modern imaging techniques is needed to ensure a mechanistic understanding of these forces. In this work, we mapped these intracellular forces at a whole-cell scale and with submicron resolution to correlate intracellular force distribution to the cytoskeletal structures. Furthermore, we visualized dynamic mechanical responses of the cells adapting to environmental modulations in situ. Such task was achieved by using an informatics-assisted atomic force microscope (AFM) indentation technique where a key step was Markov-chain Monte Carlo optimization to search for both the models used to fit indentation force-displacement curves and probe geometry descriptors. We demonstrated force dynamics within cytoskeleton, as well as nucleoskeleton in living cells which were subjected to mechanical state modulation: myosin motor inhibition, micro-compression stimulation and geometrical confinement manipulation. Our results highlight the alteration in the intracellular prestress to attenuate environmental stimuli; to involve in cellular survival against mechanical signal-initiated death during cancer growth and metastasis; and to initiate cell migration.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2265434"},"PeriodicalIF":5.5,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10586080/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49692276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-17eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2260298
Siriboon Supajaruwong, Sirawich Porahong, Agung Wibowo, Yu-Sheng Yu, Mohd Jahir Khan, Pisut Pongchaikul, Pattaraporn Posoknistakul, Navadol Laosiripojana, Kevin C-W Wu, Chularat Sakdaronnarong
Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min-1 flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min-1 of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL-1 CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.
{"title":"Scaling-up of carbon dots hydrothermal synthesis from sugars in a continuous flow microreactor system for biomedical application as <i>in vitro</i> antimicrobial drug nanocarrier.","authors":"Siriboon Supajaruwong, Sirawich Porahong, Agung Wibowo, Yu-Sheng Yu, Mohd Jahir Khan, Pisut Pongchaikul, Pattaraporn Posoknistakul, Navadol Laosiripojana, Kevin C-W Wu, Chularat Sakdaronnarong","doi":"10.1080/14686996.2023.2260298","DOIUrl":"https://doi.org/10.1080/14686996.2023.2260298","url":null,"abstract":"<p><p>Carbon dots (CDs) are a new class of nanomaterials exhibiting high biocompatibility, water solubility, functionality, and tunable fluorescence (FL) property. Due to the limitations of batch hydrothermal synthesis in terms of low CDs yield and long synthesis duration, this work aimed to increase its production capacity through a continuous flow reactor system. The influence of temperature and time was first studied in a batch reactor for glucose, xylose, sucrose and table sugar precursors. CDs synthesized from sucrose precursor exhibited the highest quantum yield (QY) (175.48%) and the average diameter less than 10 nm (~6.8 ± 1.1 nm) when synthesized at 220°C for 9 h. For a flow reactor system, the best condition for CDs production from sucrose was 1 mL min<sup>-1</sup> flow rate at 280°C, and 0.2 MPa pressure yielding 53.03% QY and ~ 6.5 ± 0.6 nm average diameter (6.6 mg min<sup>-1</sup> of CDs productivity). CDs were successfully used as ciprofloxacin (CP) nanocarrier for antimicrobial activity study. The cytotoxicity study showed that no effect of CDs on viability of L-929 fibroblast cells was detected until 1000 µg mL<sup>-1</sup> CDs concentration. This finding demonstrates that CDs synthesized via a flow reactor system have a high zeta potential and suitable surface properties for nano-theranostic applications.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2260298"},"PeriodicalIF":5.5,"publicationDate":"2023-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10583617/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2263265
Ye Zhou, Su-Ting Han
{"title":"Foreword to the focus issue: materials and technologies for memristors and neuromorphic devices.","authors":"Ye Zhou, Su-Ting Han","doi":"10.1080/14686996.2023.2263265","DOIUrl":"https://doi.org/10.1080/14686996.2023.2263265","url":null,"abstract":"","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2263265"},"PeriodicalIF":5.5,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10580789/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2261833
Yin Kan Phua, Tsuyohiko Fujigaya, Koichiro Kato
Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm-1), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.
阴离子交换膜是燃料电池和水电解槽的核心部件,对实现可持续的氢社会至关重要。AEM的低阴离子传导性和耐久性阻碍了基于AEM的设备的商业化,而改进AEM材料的研发(R&D)往往是资源密集型的。尽管机器学习(ML)在许多领域中普遍用于加速研发,同时减少资源消耗,但它很少用于AEM领域。三个问题阻碍了ML模型的采用,即ML模型的可解释性低;将均聚物和共聚物统一表达以训练单个ML模型的复杂性;以及难以建立理解各种聚合物类型的单个ML模型。本研究提出了第一个解决所有三个问题的ML模型。我们的模型以高精度(均方根误差 = 0.014 S cm-1),而不管它们的状态(新合成的或降解的)。这使得能够对新型AEM材料进行虚拟预合成筛选,从而减少资源消耗。此外,人类可理解的预测逻辑揭示了影响AEM材料阴离子电导率的新因素。这种为AEM材料设计揭示新的重要变量的能力可能会改变AEM研发的范式。这种提出的方法并不局限于AEM材料,相反,它提供了一种适用于目前可用的各种聚合物的技术。
{"title":"Predicting the anion conductivities and alkaline stabilities of anion conducting membrane polymeric materials: development of explainable machine learning models.","authors":"Yin Kan Phua, Tsuyohiko Fujigaya, Koichiro Kato","doi":"10.1080/14686996.2023.2261833","DOIUrl":"https://doi.org/10.1080/14686996.2023.2261833","url":null,"abstract":"<p><p>Anion exchange membranes (AEMs) are core components in fuel cells and water electrolyzers, which are crucial to realize a sustainable hydrogen society. The low anion conductivity and durability of AEMs have hindered the commercialization of AEM-based devices, and research and development (R&D) to improve AEM materials is often resource-intensive. Although machine learning (ML) is commonly used in many fields to accelerate R&D while reducing resource consumption, it is rarely used in the AEM field. Three problems hinder the adoption of ML models, namely, the low explainability of ML models; complication with expressing both homopolymers and copolymers in unity to train a single ML model; and difficulty in building a single ML model that comprehends various polymer types. This study presents the first ML models that solve all three problems. Our models predicted the anion conductivity for a diverse set of unseen AEM materials with high accuracy (root mean squared error = 0.014 S cm<sup>-1</sup>), regardless of their state (freshly synthesized or degraded). This enables virtual pre-synthesis screening of novel AEM materials, reducing resource consumption. Moreover, human-comprehensible prediction logic revealed new factors affecting the anion conductivity of AEM materials. Such capability to reveal new important variables for AEM materials design could shift the paradigm of AEM R&D. This proposed method is not limited to AEM materials, instead it presents a technology that is applicable to the diverse set of polymers currently available.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2261833"},"PeriodicalIF":5.5,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/08/7b/TSTA_24_2261833.PMC10580864.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-16eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2260301
Han Kim, Minseob Lim, Byungkwon Jang, Si-Woo Park, Ji Young Park, Haishan Shen, Kangmo Koo, Hong-Baek Cho, Yong-Ho Choa
This study introduces an approach to overcome the limitations of conventional pressure sensors by developing a thin and lightweight composite film specifically tailored for flexible capacitive pressure sensors, with a particular emphasis on the medium and high pressure range. To accomplish this, we have engineered a composite film by combining polyvinylidene fluoride (PVDF) and graphite nanoplatelets (GNP) derived from expanded graphite (Ex-G). A uniform sized GNPs with an average lateral size of 2.55av and an average thickness of 33.74 av with narrow size distribution was obtained with a gas-induced expansion of expandable graphite (EXP-G) combined with tip sonication in solvent. By this precisely controlled GNP within the composite film, a remarkable improvement in sensor sensitivity has been achieved, surpassing 4.18 MPa-1 within the pressure range of 0.1 to 1.6 MPa. This enhancement can be attributed to the generation of electric charge from the movement of GNP in the polymer matrix. Additionally, stability testing has demonstrated the reliable operation of the composite film over 1000 cycles. Notably, the composite film exhibits exceptional continuous pressure sensing capabilities with a rapid response time of approximately 100 milliseconds. Experimental validation using a 3 × 3 sensor array has confirmed the accurate detection of specific contact points, thus highlighting the potential of the composite film in selective pressure sensing. These findings signify an advancement in the field of flexible capacitive pressure sensors that offer enhanced sensitivity, consistent operation, rapid response time, and the unique ability to selectively sense pressure.
{"title":"Enhanced capacitive pressure sensing performance by charge generation from filler movement in thin and flexible PVDF-GNP composite films.","authors":"Han Kim, Minseob Lim, Byungkwon Jang, Si-Woo Park, Ji Young Park, Haishan Shen, Kangmo Koo, Hong-Baek Cho, Yong-Ho Choa","doi":"10.1080/14686996.2023.2260301","DOIUrl":"https://doi.org/10.1080/14686996.2023.2260301","url":null,"abstract":"<p><p>This study introduces an approach to overcome the limitations of conventional pressure sensors by developing a thin and lightweight composite film specifically tailored for flexible capacitive pressure sensors, with a particular emphasis on the medium and high pressure range. To accomplish this, we have engineered a composite film by combining polyvinylidene fluoride (PVDF) and graphite nanoplatelets (GNP) derived from expanded graphite (Ex-G). A uniform sized GNPs with an average lateral size of 2.55<sub>av</sub> and an average thickness of 33.74 <sub>av</sub> with narrow size distribution was obtained with a gas-induced expansion of expandable graphite (EXP-G) combined with tip sonication in solvent. By this precisely controlled GNP within the composite film, a remarkable improvement in sensor sensitivity has been achieved, surpassing 4.18 MPa<sup>-1</sup> within the pressure range of 0.1 to 1.6 MPa. This enhancement can be attributed to the generation of electric charge from the movement of GNP in the polymer matrix. Additionally, stability testing has demonstrated the reliable operation of the composite film over 1000 cycles. Notably, the composite film exhibits exceptional continuous pressure sensing capabilities with a rapid response time of approximately 100 milliseconds. Experimental validation using a 3 × 3 sensor array has confirmed the accurate detection of specific contact points, thus highlighting the potential of the composite film in selective pressure sensing. These findings signify an advancement in the field of flexible capacitive pressure sensors that offer enhanced sensitivity, consistent operation, rapid response time, and the unique ability to selectively sense pressure.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2260301"},"PeriodicalIF":5.5,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ff/89/TSTA_24_2260301.PMC10580860.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49681897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Improving the damage tolerance and reliability of ceramic artificial bone materials, such as sintered bodies of hydroxyapatite (HAp), that remain in vivo for long periods of time is of utmost importance. However, the intrinsic brittleness and low damage tolerance of ceramics make this challenging. This paper reports the synthesis of highly damage tolerant calcium phosphate-based materials with a bioinspired design for novel artificial bones. The heat treatment of isophthalate ion-containing octacalcium phosphate compacts in a nitrogen atmosphere at 1000°C for 24 h produced an HAp/β-tricalcium phosphate/pyrolytic carbon composite with a brick-and-mortar structure (similar to that of the nacreous layer). This composite exhibited excellent damage tolerance, with no brittle fracture upon nailing, likely attributable to the specific mechanical properties derived from its unique microstructure. Its maximum bending stress, maximum bending strain, Young's modulus, and Vickers hardness were 11.7 MPa, 2.8 × 10‒2, 5.3 GPa, and 11.7 kgf/mm2, respectively. The material exhibited a lower Young's modulus and higher fracture strain than that of HAp-sintered bodies and sintered-body samples prepared from pure octacalcium phosphate compacts. Additionally, the apatite-forming ability of the obtained material was confirmed in vitro, using a simulated body fluid. The proposed bioinspired material design could enable the fabrication of highly damage tolerant artificial bones that remain in vivo for long durations of time.
{"title":"Development of bioinspired damage-tolerant calcium phosphate bulk materials.","authors":"Karen Kuroyama, Ryuichi Fujikawa, Tomoyo Goto, Tohru Sekino, Fumiya Nakamura, Hiromi Kimura-Suda, Peng Chen, Hiroyasu Kanetaka, Tomoka Hasegawa, Kaname Yoshida, Masaru Murata, Hidemi Nakata, Masaya Shimabukuro, Masakazu Kawashita, Tetsuya Yoda, Taishi Yokoi","doi":"10.1080/14686996.2023.2261836","DOIUrl":"10.1080/14686996.2023.2261836","url":null,"abstract":"<p><p>Improving the damage tolerance and reliability of ceramic artificial bone materials, such as sintered bodies of hydroxyapatite (HAp), that remain <i>in vivo</i> for long periods of time is of utmost importance. However, the intrinsic brittleness and low damage tolerance of ceramics make this challenging. This paper reports the synthesis of highly damage tolerant calcium phosphate-based materials with a bioinspired design for novel artificial bones. The heat treatment of isophthalate ion-containing octacalcium phosphate compacts in a nitrogen atmosphere at 1000°C for 24 h produced an HAp/β-tricalcium phosphate/pyrolytic carbon composite with a brick-and-mortar structure (similar to that of the nacreous layer). This composite exhibited excellent damage tolerance, with no brittle fracture upon nailing, likely attributable to the specific mechanical properties derived from its unique microstructure. Its maximum bending stress, maximum bending strain, Young's modulus, and Vickers hardness were 11.7 MPa, 2.8 × 10<sup>‒</sup><sup>2</sup>, 5.3 GPa, and 11.7 kgf/mm<sup>2</sup>, respectively. The material exhibited a lower Young's modulus and higher fracture strain than that of HAp-sintered bodies and sintered-body samples prepared from pure octacalcium phosphate compacts. Additionally, the apatite-forming ability of the obtained material was confirmed <i>in vitro</i>, using a simulated body fluid. The proposed bioinspired material design could enable the fabrication of highly damage tolerant artificial bones that remain <i>in vivo</i> for long durations of time.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2261836"},"PeriodicalIF":5.5,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/1f/7b/TSTA_24_2261836.PMC10572054.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41238332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-30eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2252725
Kai Jiang, Shubing Li, Fangfang Chen, Liping Zhu, Wenwu Li
Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.
{"title":"Microstructure characterization, phase transition, and device application of phase-change memory materials.","authors":"Kai Jiang, Shubing Li, Fangfang Chen, Liping Zhu, Wenwu Li","doi":"10.1080/14686996.2023.2252725","DOIUrl":"https://doi.org/10.1080/14686996.2023.2252725","url":null,"abstract":"<p><p>Phase-change memory (PCM), recently developed as the storage-class memory in a computer system, is a new non-volatile memory technology. In addition, the applications of PCM in a non-von Neumann computing, such as neuromorphic computing and in-memory computing, are being investigated. Although PCM-based devices have been extensively studied, several concerns regarding the electrical, thermal, and structural dynamics of phase-change devices remain. In this article, aiming at PCM devices, a comprehensive review of PCM materials is provided, including the primary PCM device mechanics that underpin read and write operations, physics-based modeling initiatives and experimental characterization of the many features examined in nanoscale PCM devices. Finally, this review will propose a prognosis on a few unsolved challenges and highlight research areas of further investigation.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2252725"},"PeriodicalIF":5.5,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ed/fc/TSTA_24_2252725.PMC10512918.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41144922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-15eCollection Date: 2023-01-01DOI: 10.1080/14686996.2023.2210723
Bo Peng, Jia-Feng Zhou, Meng Ding, Bing-Qian Shan, Tong Chen, Kun Zhang
In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated p band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.
{"title":"Structural water molecules dominated p band intermediate states as a unified model for the origin on the photoluminescence emission of noble metal nanoclusters: from monolayer protected clusters to cage confined nanoclusters.","authors":"Bo Peng, Jia-Feng Zhou, Meng Ding, Bing-Qian Shan, Tong Chen, Kun Zhang","doi":"10.1080/14686996.2023.2210723","DOIUrl":"10.1080/14686996.2023.2210723","url":null,"abstract":"<p><p>In the past several decades, noble metal nanoclusters (NMNCs) have been developed as an emerging class of luminescent materials due to their superior photo-stability and biocompatibility, but their luminous quantum yield is relatively low and the physical origin of the bright photoluminescence (PL) of NMNCs remain elusive, which limited their practical application. As the well-defined structure and composition of NMNCs have been determined, in this mini-review, the effect of each component (metal core, ligand shell and interfacial water) on their PL properties and corresponded working mechanism were comprehensively introduced, and a model that structural water molecules dominated <i>p</i> band intermediate state was proposed to give a unified understanding on the PL mechanism of NMNCs and a further perspective to the future developments of NMNCs by revisiting the development of our studies on the PL mechanism of NMNCs in the past decade.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2210723"},"PeriodicalIF":5.5,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ab/0d/TSTA_24_2210723.PMC10187113.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10563590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}