Pub Date : 2024-10-01Epub Date: 2024-05-11DOI: 10.1055/s-0044-1786754
Toshiaki Iba, Julie Helms, Takaaki Totoki, Jerrold H Levy
Historically, heparin has had the longest historical use as an anticoagulant and continues this day to be the primary therapeutic option for preventing thrombosis and thromboembolism in critically ill hospitalized patients. Heparin is also used to treat sepsis and sepsis-associated disseminated intravascular coagulation (DIC) in various countries. However, the efficacy and safety of heparin for this indication remains controversial, as adequately powered randomized clinical studies have not demonstrated as yet a survival benefit in sepsis and sepsis-associated DIC, despite meta-analyses and propensity analyses reporting improved outcomes without increasing bleeding risk. Further, activated protein C and recombinant thrombomodulin showed greater improvements in outcomes compared with heparin, although these effects were inconclusive. In summary, further research is warranted, despite the ongoing clinical use of heparin for sepsis and sepsis-associated DIC. Based on Japanese guidelines, antithrombin or recombinant thrombomodulin may be a preferable choice if they are accessible.
从历史上看,肝素作为抗凝剂的使用时间最长,至今仍是重症住院病人预防血栓形成和血栓栓塞的主要治疗选择。在许多国家,肝素还被用于治疗败血症和败血症相关的弥散性血管内凝血(DIC)。然而,肝素在这一适应症中的疗效和安全性仍存在争议,因为尽管荟萃分析和倾向分析表明肝素可在不增加出血风险的情况下改善预后,但有充分证据支持的随机临床研究尚未证明肝素对脓毒症和脓毒症相关的 DIC 有生存益处。此外,与肝素相比,活化蛋白 C 和重组血栓调节蛋白对预后的改善更大,但这些效果尚无定论。总之,尽管目前临床上仍在使用肝素治疗脓毒症和脓毒症相关的 DIC,但仍有必要开展进一步的研究。根据日本的指南,如果可以获得抗凝血酶或重组血栓调节蛋白,它们可能是更好的选择。
{"title":"Heparins May Not Be the Optimal Anticoagulants for Sepsis and Sepsis-Associated Disseminated Intravascular Coagulation.","authors":"Toshiaki Iba, Julie Helms, Takaaki Totoki, Jerrold H Levy","doi":"10.1055/s-0044-1786754","DOIUrl":"10.1055/s-0044-1786754","url":null,"abstract":"<p><p>Historically, heparin has had the longest historical use as an anticoagulant and continues this day to be the primary therapeutic option for preventing thrombosis and thromboembolism in critically ill hospitalized patients. Heparin is also used to treat sepsis and sepsis-associated disseminated intravascular coagulation (DIC) in various countries. However, the efficacy and safety of heparin for this indication remains controversial, as adequately powered randomized clinical studies have not demonstrated as yet a survival benefit in sepsis and sepsis-associated DIC, despite meta-analyses and propensity analyses reporting improved outcomes without increasing bleeding risk. Further, activated protein C and recombinant thrombomodulin showed greater improvements in outcomes compared with heparin, although these effects were inconclusive. In summary, further research is warranted, despite the ongoing clinical use of heparin for sepsis and sepsis-associated DIC. Based on Japanese guidelines, antithrombin or recombinant thrombomodulin may be a preferable choice if they are accessible.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"1012-1018"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140909365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-06-05DOI: 10.1055/s-0043-1769509
Aleksandr Shamanaev, Maxim Litvak, Ivan Ivanov, Priyanka Srivastava, Mao-Fu Sun, S Kent Dickeson, Sunil Kumar, Tracey Z He, David Gailani
Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a "closed" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.
{"title":"Factor XII Structure-Function Relationships.","authors":"Aleksandr Shamanaev, Maxim Litvak, Ivan Ivanov, Priyanka Srivastava, Mao-Fu Sun, S Kent Dickeson, Sunil Kumar, Tracey Z He, David Gailani","doi":"10.1055/s-0043-1769509","DOIUrl":"10.1055/s-0043-1769509","url":null,"abstract":"<p><p>Factor XII (FXII), the zymogen of the protease FXIIa, contributes to pathologic processes such as bradykinin-dependent angioedema and thrombosis through its capacity to convert the homologs prekallikrein and factor XI to the proteases plasma kallikrein and factor XIa. FXII activation and FXIIa activity are enhanced when the protein binds to a surface. Here, we review recent work on the structure and enzymology of FXII with an emphasis on how they relate to pathology. FXII is a homolog of pro-hepatocyte growth factor activator (pro-HGFA). We prepared a panel of FXII molecules in which individual domains were replaced with corresponding pro-HGFA domains and tested them in FXII activation and activity assays. When in fluid phase (not surface bound), FXII and prekallikrein undergo reciprocal activation. The FXII heavy chain restricts reciprocal activation, setting limits on the rate of this process. Pro-HGFA replacements for the FXII fibronectin type 2 or kringle domains markedly accelerate reciprocal activation, indicating disruption of the normal regulatory function of the heavy chain. Surface binding also enhances FXII activation and activity. This effect is lost if the FXII first epidermal growth factor (EGF1) domain is replaced with pro-HGFA EGF1. These results suggest that FXII circulates in blood in a \"closed\" form that is resistant to activation. Intramolecular interactions involving the fibronectin type 2 and kringle domains maintain the closed form. FXII binding to a surface through the EGF1 domain disrupts these interactions, resulting in an open conformation that facilitates FXII activation. These observations have implications for understanding FXII contributions to diseases such as hereditary angioedema and surface-triggered thrombosis, and for developing treatments for thrombo-inflammatory disorders.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"937-952"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10696136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9577462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-08DOI: 10.1055/s-0044-1782197
Emmanuel J Favaloro
{"title":"2024 Eberhard F. Mammen Award Announcements: Part I-Most Popular Articles.","authors":"Emmanuel J Favaloro","doi":"10.1055/s-0044-1782197","DOIUrl":"10.1055/s-0044-1782197","url":null,"abstract":"","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"919-932"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140065851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-04-18DOI: 10.1055/s-0043-57034
Katherine J Kearney, Henri M H Spronk, Jonas Emsley, Nigel S Key, Helen Philippou
For decades, it was considered that plasma kallikrein's (PKa) sole function within the coagulation cascade is the activation of factor (F)XII. Until recently, the two key known activators of FIX within the coagulation cascade were activated FXI(a) and the tissue factor-FVII(a) complex. Simultaneously, and using independent experimental approaches, three groups identified a new branch of the coagulation cascade, whereby PKa can directly activate FIX. These key studies identified that (1) FIX or FIXa can bind with high affinity to either prekallikrein (PK) or PKa; (2) in human plasma, PKa can dose dependently trigger thrombin generation and clot formation independent of FXI; (3) in FXI knockout murine models treated with intrinsic pathway agonists, PKa activity results in increased formation of FIXa:AT complexes, indicating direct activation of FIX by PKa in vivo. These findings suggest that there is both a canonical (FXIa-dependent) and non-canonical (PKa-dependent) pathway of FIX activation. These three recent studies are described within this review, alongside historical data that hinted at the existence of this novel role of PKa as a coagulation clotting factor. The implications of direct PKa cleavage of FIX remain to be determined physiologically, pathophysiologically, and in the context of next-generation anticoagulants in development.
{"title":"Plasma Kallikrein as a Forgotten Clotting Factor.","authors":"Katherine J Kearney, Henri M H Spronk, Jonas Emsley, Nigel S Key, Helen Philippou","doi":"10.1055/s-0043-57034","DOIUrl":"10.1055/s-0043-57034","url":null,"abstract":"<p><p>For decades, it was considered that plasma kallikrein's (PKa) sole function within the coagulation cascade is the activation of factor (F)XII. Until recently, the two key known activators of FIX within the coagulation cascade were activated FXI(a) and the tissue factor-FVII(a) complex. Simultaneously, and using independent experimental approaches, three groups identified a new branch of the coagulation cascade, whereby PKa can directly activate FIX. These key studies identified that (1) FIX or FIXa can bind with high affinity to either prekallikrein (PK) or PKa; (2) in human plasma, PKa can dose dependently trigger thrombin generation and clot formation independent of FXI; (3) in FXI knockout murine models treated with intrinsic pathway agonists, PKa activity results in increased formation of FIXa:AT complexes, indicating direct activation of FIX by PKa <i>in vivo</i>. These findings suggest that there is both a canonical (FXIa-dependent) and non-canonical (PKa-dependent) pathway of FIX activation. These three recent studies are described within this review, alongside historical data that hinted at the existence of this novel role of PKa as a coagulation clotting factor. The implications of direct PKa cleavage of FIX remain to be determined physiologically, pathophysiologically, and in the context of next-generation anticoagulants in development.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"953-961"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10000934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-03-20DOI: 10.1055/s-0043-1764469
André L Lira, Tia C L Kohs, Samantha A Moellmer, Joseph J Shatzel, Owen J T McCarty, Cristina Puy
Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.
{"title":"Substrates, Cofactors, and Cellular Targets of Coagulation Factor XIa.","authors":"André L Lira, Tia C L Kohs, Samantha A Moellmer, Joseph J Shatzel, Owen J T McCarty, Cristina Puy","doi":"10.1055/s-0043-1764469","DOIUrl":"10.1055/s-0043-1764469","url":null,"abstract":"<p><p>Coagulation factor XI (FXI) has increasingly been shown to play an integral role in several physiologic and pathological processes. FXI is among several zymogens within the blood coagulation cascade that are activated by proteolytic cleavage, with FXI converting to the active serine protease form (FXIa). The evolutionary origins of FXI trace back to duplication of the gene that transcribes plasma prekallikrein, a key factor in the plasma kallikrein-kinin system, before further genetic divergence led to FXI playing a unique role in blood coagulation. While FXIa is canonically known for activating the intrinsic pathway of coagulation by catalyzing the conversion of FIX into FIXa, it is promiscuous in nature and has been shown to contribute to thrombin generation independent of FIX. In addition to its role in the intrinsic pathway of coagulation, FXI also interacts with platelets, endothelial cells, and mediates the inflammatory response through activation of FXII and cleavage of high-molecular-weight kininogen to generate bradykinin. In this manuscript, we critically review the current body of knowledge surrounding how FXI navigates the interplay of hemostasis, inflammatory processes, and the immune response and highlight future avenues for research. As FXI continues to be clinically explored as a druggable therapeutic target, understanding how this coagulation factor fits into physiological and disease mechanisms becomes increasingly important.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"962-969"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069399/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9342316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2023-04-12DOI: 10.1055/s-0043-57011
Abhishek Goel, Harsha Tathireddy, Si-Han Wang, Helen H Vu, Cristina Puy, Monica T Hinds, David Zonies, Owen J T McCarty, Joseph J Shatzel
Hemorrhage remains a major complication of anticoagulants, with bleeding leading to serious and even life-threatening outcomes in rare settings. Currently available anticoagulants target either multiple coagulation factors or specifically coagulation factor (F) Xa or thrombin; however, inhibiting these pathways universally impairs hemostasis. Bleeding complications are especially salient in the medically complex population who benefit from medical devices. Extracorporeal devices-such as extracorporeal membrane oxygenation, hemodialysis, and cardiac bypass-require anticoagulation for optimal use. Nonetheless, bleeding complications are common, and with certain devices, highly morbid. Likewise, pharmacologic prophylaxis to prevent thrombosis is not commonly used with many medical devices like central venous catheters due to high rates of bleeding. The contact pathway members FXI, FXII, and prekallikrein serve as a nexus, connecting biomaterial surface-mediated thrombin generation and inflammation, and may represent safe, druggable targets to improve medical device hemocompatibility and thrombogenicity. Recent in vivo and clinical data suggest that selectively targeting the contact pathway of coagulation through the inhibition of FXI and FXII can reduce the incidence of medical device-associated thrombotic events, and potentially systemic inflammation, without impairing hemostasis. In the following review, we will outline the current in vivo and clinical data encompassing the mechanism of action of drugs targeting the contact pathway. This new class of inhibitors has the potential to herald a new era of effective and low-risk anticoagulation for the management of patients requiring the use of medical devices.
{"title":"Targeting the Contact Pathway of Coagulation for the Prevention and Management of Medical Device-Associated Thrombosis.","authors":"Abhishek Goel, Harsha Tathireddy, Si-Han Wang, Helen H Vu, Cristina Puy, Monica T Hinds, David Zonies, Owen J T McCarty, Joseph J Shatzel","doi":"10.1055/s-0043-57011","DOIUrl":"10.1055/s-0043-57011","url":null,"abstract":"<p><p>Hemorrhage remains a major complication of anticoagulants, with bleeding leading to serious and even life-threatening outcomes in rare settings. Currently available anticoagulants target either multiple coagulation factors or specifically coagulation factor (F) Xa or thrombin; however, inhibiting these pathways universally impairs hemostasis. Bleeding complications are especially salient in the medically complex population who benefit from medical devices. Extracorporeal devices-such as extracorporeal membrane oxygenation, hemodialysis, and cardiac bypass-require anticoagulation for optimal use. Nonetheless, bleeding complications are common, and with certain devices, highly morbid. Likewise, pharmacologic prophylaxis to prevent thrombosis is not commonly used with many medical devices like central venous catheters due to high rates of bleeding. The contact pathway members FXI, FXII, and prekallikrein serve as a nexus, connecting biomaterial surface-mediated thrombin generation and inflammation, and may represent safe, druggable targets to improve medical device hemocompatibility and thrombogenicity. Recent in vivo and clinical data suggest that selectively targeting the contact pathway of coagulation through the inhibition of FXI and FXII can reduce the incidence of medical device-associated thrombotic events, and potentially systemic inflammation, without impairing hemostasis. In the following review, we will outline the current in vivo and clinical data encompassing the mechanism of action of drugs targeting the contact pathway. This new class of inhibitors has the potential to herald a new era of effective and low-risk anticoagulation for the management of patients requiring the use of medical devices.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"989-997"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11069398/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9295467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-05-11DOI: 10.1055/s-0044-1786756
Kishore R Kumar, Mark J Cowley, Ryan L Davis
{"title":"The Next, Next-Generation of Sequencing, Promising to Boost Research and Clinical Practice.","authors":"Kishore R Kumar, Mark J Cowley, Ryan L Davis","doi":"10.1055/s-0044-1786756","DOIUrl":"10.1055/s-0044-1786756","url":null,"abstract":"","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"1039-1046"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140907801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-03-28DOI: 10.1055/s-0044-1782660
David Noone, Roger J S Preston, Aisling M Rehill
Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.
{"title":"The Role of Myeloid Cells in Thromboinflammatory Disease.","authors":"David Noone, Roger J S Preston, Aisling M Rehill","doi":"10.1055/s-0044-1782660","DOIUrl":"10.1055/s-0044-1782660","url":null,"abstract":"<p><p>Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":"998-1011"},"PeriodicalIF":3.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140319081","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arneaux Kruger, David Joffe, Graham Lloyd-Jones, Muhammed Asad Khan, Špela Šalamon, Gert J Laubscher, David Putrino, Douglas B Kell, Etheresia Pretorius
Long coronavirus disease 2019 (COVID-19)-a postacute consequence of severe acute respiratory syndrome coronavirus 2 infection-manifests with a broad spectrum of relapsing and remitting or persistent symptoms as well as varied levels of organ damage, which may be asymptomatic or present as acute events such as heart attacks or strokes and recurrent infections, hinting at complex underlying pathogenic mechanisms. Central to these symptoms is vascular dysfunction rooted in thrombotic endothelialitis. We review the scientific evidence that widespread endothelial dysfunction (ED) leads to chronic symptomatology. We briefly examine the molecular pathways contributing to endothelial pathology and provide a detailed analysis of how these cellular processes underpin the clinical picture. Noninvasive diagnostic techniques, such as flow-mediated dilation and peripheral arterial tonometry, are evaluated for their utility in identifying ED. We then explore mechanistic, cellular-targeted therapeutic interventions for their potential in treating ED. Overall, we emphasize the critical role of cellular health in managing Long COVID and highlight the need for early intervention to prevent long-term vascular and cellular dysfunction.
2019年长冠状病毒病(COVID-19)--严重急性呼吸系统综合征冠状病毒2感染的急性后遗症--表现为广泛的复发和缓解或持续性症状以及不同程度的器官损伤,这些症状可能没有症状,也可能表现为急性事件,如心脏病发作或中风以及反复感染,这暗示着复杂的潜在致病机制。这些症状的核心是源于血栓性内皮炎的血管功能障碍。我们回顾了广泛的内皮功能障碍(ED)导致慢性症状的科学证据。我们简要研究了导致内皮病理学的分子途径,并详细分析了这些细胞过程是如何支撑临床症状的。我们还评估了非侵入性诊断技术,如血流介导的扩张和外周动脉测压,以确定它们在识别 ED 方面的效用。然后,我们探讨了以细胞为靶点的机理治疗干预措施在治疗 ED 方面的潜力。总之,我们强调了细胞健康在管理 Long COVID 中的关键作用,并强调了早期干预以预防长期血管和细胞功能障碍的必要性。
{"title":"Vascular Pathogenesis in Acute and Long COVID: Current Insights and Therapeutic Outlook.","authors":"Arneaux Kruger, David Joffe, Graham Lloyd-Jones, Muhammed Asad Khan, Špela Šalamon, Gert J Laubscher, David Putrino, Douglas B Kell, Etheresia Pretorius","doi":"10.1055/s-0044-1790603","DOIUrl":"https://doi.org/10.1055/s-0044-1790603","url":null,"abstract":"<p><p>Long coronavirus disease 2019 (COVID-19)-a postacute consequence of severe acute respiratory syndrome coronavirus 2 infection-manifests with a broad spectrum of relapsing and remitting or persistent symptoms as well as varied levels of organ damage, which may be asymptomatic or present as acute events such as heart attacks or strokes and recurrent infections, hinting at complex underlying pathogenic mechanisms. Central to these symptoms is vascular dysfunction rooted in thrombotic endothelialitis. We review the scientific evidence that widespread endothelial dysfunction (ED) leads to chronic symptomatology. We briefly examine the molecular pathways contributing to endothelial pathology and provide a detailed analysis of how these cellular processes underpin the clinical picture. Noninvasive diagnostic techniques, such as flow-mediated dilation and peripheral arterial tonometry, are evaluated for their utility in identifying ED. We then explore mechanistic, cellular-targeted therapeutic interventions for their potential in treating ED. Overall, we emphasize the critical role of cellular health in managing Long COVID and highlight the need for early intervention to prevent long-term vascular and cellular dysfunction.</p>","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142353072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hope P Wilson, Maua Mosha, Alexandra Miller, Marisol Betensky, Ernest Amankwah, John Fargo, Courtney D Thornburg, Cristina Tarango, Suchitra Acharya, Christoph Male, Shalu Narang, Sam Schulman, Neil A Goldenberg
{"title":"Secondary Anticoagulation Use in Patients < 21 Years Old following Primary Anticoagulant Treatment for Provoked Venous Thromboembolism: Findings from the Kids-DOTT Trial.","authors":"Hope P Wilson, Maua Mosha, Alexandra Miller, Marisol Betensky, Ernest Amankwah, John Fargo, Courtney D Thornburg, Cristina Tarango, Suchitra Acharya, Christoph Male, Shalu Narang, Sam Schulman, Neil A Goldenberg","doi":"10.1055/s-0044-1790572","DOIUrl":"10.1055/s-0044-1790572","url":null,"abstract":"","PeriodicalId":21673,"journal":{"name":"Seminars in thrombosis and hemostasis","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142294438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}