首页 > 最新文献

Signal Process.最新文献

英文 中文
Structured Bayesian compressive sensing exploiting dirichlet process priors 利用dirichlet过程先验的结构化贝叶斯压缩感知
Pub Date : 2022-07-01 DOI: 10.2139/ssrn.4021941
Qisong Wu, Yin Fu, Yimin D. Zhang, M. Amin
{"title":"Structured Bayesian compressive sensing exploiting dirichlet process priors","authors":"Qisong Wu, Yin Fu, Yimin D. Zhang, M. Amin","doi":"10.2139/ssrn.4021941","DOIUrl":"https://doi.org/10.2139/ssrn.4021941","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"11 1","pages":"108680"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81181981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Two-dimensional sparse fractional Fourier transform and its applications 二维稀疏分数傅里叶变换及其应用
Pub Date : 2022-07-01 DOI: 10.2139/ssrn.4103340
Deyun Wei, Jun Yang
{"title":"Two-dimensional sparse fractional Fourier transform and its applications","authors":"Deyun Wei, Jun Yang","doi":"10.2139/ssrn.4103340","DOIUrl":"https://doi.org/10.2139/ssrn.4103340","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"17 1","pages":"108682"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72549287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Adaptive multi-level graph convolution with contrastive learning for skeleton-based action recognition 基于骨架的动作识别的自适应多级图卷积对比学习
Pub Date : 2022-07-01 DOI: 10.1016/j.sigpro.2022.108714
Pei Geng, Haowei Li, F. Wang, Lei Lyu
{"title":"Adaptive multi-level graph convolution with contrastive learning for skeleton-based action recognition","authors":"Pei Geng, Haowei Li, F. Wang, Lei Lyu","doi":"10.1016/j.sigpro.2022.108714","DOIUrl":"https://doi.org/10.1016/j.sigpro.2022.108714","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"234 1 1","pages":"108714"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72936746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Asymptotic performance of FBMC-PAM systems in frequency-selective Rayleigh fading channels 频率选择瑞利衰落信道中FBMC-PAM系统的渐近性能
Pub Date : 2022-07-01 DOI: 10.1016/j.sigpro.2022.108693
M. Tanda
{"title":"Asymptotic performance of FBMC-PAM systems in frequency-selective Rayleigh fading channels","authors":"M. Tanda","doi":"10.1016/j.sigpro.2022.108693","DOIUrl":"https://doi.org/10.1016/j.sigpro.2022.108693","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"72 1","pages":"108693"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89822702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A novel time-frequency model, analysis and parameter estimation approach: Towards multiple close and crossed chirp modes 一种新的时频模型、分析和参数估计方法:针对多个紧密和交叉的啁啾模式
Pub Date : 2022-07-01 DOI: 10.1016/j.sigpro.2022.108692
Y. Wang, Wen-Xia Yang, Dan Li, J. Zhang
{"title":"A novel time-frequency model, analysis and parameter estimation approach: Towards multiple close and crossed chirp modes","authors":"Y. Wang, Wen-Xia Yang, Dan Li, J. Zhang","doi":"10.1016/j.sigpro.2022.108692","DOIUrl":"https://doi.org/10.1016/j.sigpro.2022.108692","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"116 1","pages":"108692"},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88471551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Reversible data hiding in JPEG images based on coefficient-first selection 基于系数优先选择的JPEG图像可逆数据隐藏
Pub Date : 2022-06-01 DOI: 10.2139/ssrn.4021942
Xie Yang, Taoyu Wu, Fangjun Huang
{"title":"Reversible data hiding in JPEG images based on coefficient-first selection","authors":"Xie Yang, Taoyu Wu, Fangjun Huang","doi":"10.2139/ssrn.4021942","DOIUrl":"https://doi.org/10.2139/ssrn.4021942","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"1 1","pages":"108639"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88582433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Separable compressed coded aperture imaging via singular value decomposition 基于奇异值分解的可分离压缩编码孔径成像
Pub Date : 2022-06-01 DOI: 10.2139/ssrn.4040497
Chen Zhang, Feng Wu, Chen Qianwen, Zhou Jiaxuan, Sui Wei
{"title":"Separable compressed coded aperture imaging via singular value decomposition","authors":"Chen Zhang, Feng Wu, Chen Qianwen, Zhou Jiaxuan, Sui Wei","doi":"10.2139/ssrn.4040497","DOIUrl":"https://doi.org/10.2139/ssrn.4040497","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"54 1","pages":"108669"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86874614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
An interpretable bi-branch neural network for matrix completion 矩阵补全的可解释双分支神经网络
Pub Date : 2022-06-01 DOI: 10.2139/ssrn.4006034
Xiao Peng Li, Maolin Wang, H. So
The task of recovering a low-rank matrix given an incomplete matrix, also termed as matrix completion, arises in various applications. Methods for matrix completion can be classified into linear and nonlinear approaches. Despite the fact that the linear model provides basic theories ensuring restoring the missing entries with high probability, it has an obvious limitation that latent factors are restricted in the linear subspace. Thus, the nonlinear model has been suggested, which is mainly performed using neural networks. In this paper, a novel and interpretable neural network is developed for matrix completion. Different from existing neural networks whose structure is created by empirical design, the proposed version is devised via unfolding the matrix factorization formulation. Specifically, the two factors decomposed by matrix factorization construct the two branches of the suggested neural network, called bi-branch neural network (BiBNN). The row and column indices of each entry are considered as the input of the BiBNN, while its output is the estimated value of the entry. The training procedure aims to minimize the fit-ting error between all observed entries and their predicted values and then the unknown entries are estimated by inputting their coordinates into the trained network. The BiBNN is compared with state-of-the-art methods, including linear and nonlinear models, in processing synthetic data, image inpainting, and recommender system. Experimental results demonstrate that the BiBNN is superior to the existing approaches in terms of restoration accuracy.
给定一个不完全矩阵,恢复一个低秩矩阵的任务,也称为矩阵补全,出现在各种应用中。矩阵补全的方法可分为线性方法和非线性方法。尽管线性模型提供了保证高概率恢复缺失条目的基本理论,但它存在明显的局限性,即潜在因素在线性子空间中受到限制。因此,提出了非线性模型,该模型主要利用神经网络来实现。本文提出了一种用于矩阵补全的新型可解释神经网络。不同于现有的神经网络结构是由经验设计的,本文提出的版本是通过展开矩阵分解公式来设计的。具体来说,通过矩阵分解分解的两个因子构成了所建议的神经网络的两个分支,称为双分支神经网络(BiBNN)。每个条目的行索引和列索引被认为是BiBNN的输入,而它的输出是该条目的估计值。训练过程的目的是最小化所有观测项与其预测值之间的拟合误差,然后通过将未知项的坐标输入到训练网络中来估计未知项。BiBNN在处理合成数据、图像绘制、推荐系统等方面与线性和非线性模型等最先进的方法进行了比较。实验结果表明,BiBNN在恢复精度方面优于现有方法。
{"title":"An interpretable bi-branch neural network for matrix completion","authors":"Xiao Peng Li, Maolin Wang, H. So","doi":"10.2139/ssrn.4006034","DOIUrl":"https://doi.org/10.2139/ssrn.4006034","url":null,"abstract":"The task of recovering a low-rank matrix given an incomplete matrix, also termed as matrix completion, arises in various applications. Methods for matrix completion can be classified into linear and nonlinear approaches. Despite the fact that the linear model provides basic theories ensuring restoring the missing entries with high probability, it has an obvious limitation that latent factors are restricted in the linear subspace. Thus, the nonlinear model has been suggested, which is mainly performed using neural networks. In this paper, a novel and interpretable neural network is developed for matrix completion. Different from existing neural networks whose structure is created by empirical design, the proposed version is devised via unfolding the matrix factorization formulation. Specifically, the two factors decomposed by matrix factorization construct the two branches of the suggested neural network, called bi-branch neural network (BiBNN). The row and column indices of each entry are considered as the input of the BiBNN, while its output is the estimated value of the entry. The training procedure aims to minimize the fit-ting error between all observed entries and their predicted values and then the unknown entries are estimated by inputting their coordinates into the trained network. The BiBNN is compared with state-of-the-art methods, including linear and nonlinear models, in processing synthetic data, image inpainting, and recommender system. Experimental results demonstrate that the BiBNN is superior to the existing approaches in terms of restoration accuracy.","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"7 1","pages":"108640"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79312502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A distortion model-based pre-screening method for document image tampering localization under recapturing attack 一种基于失真模型的重新捕获攻击下文档图像篡改定位预筛选方法
Pub Date : 2022-06-01 DOI: 10.2139/ssrn.4098770
Changsheng Chen, Lin Zhao, Jiabin Yan, Haodong Li
{"title":"A distortion model-based pre-screening method for document image tampering localization under recapturing attack","authors":"Changsheng Chen, Lin Zhao, Jiabin Yan, Haodong Li","doi":"10.2139/ssrn.4098770","DOIUrl":"https://doi.org/10.2139/ssrn.4098770","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"8 1","pages":"108666"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85769256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Towards a median signal detector through the total Bregman divergence and its robustness analysis 通过对总Bregman散度及其鲁棒性分析,提出了一种中值信号检测器
Pub Date : 2022-05-09 DOI: 10.1016/j.sigpro.2022.108728
Y. Ono, Linyu Peng
{"title":"Towards a median signal detector through the total Bregman divergence and its robustness analysis","authors":"Y. Ono, Linyu Peng","doi":"10.1016/j.sigpro.2022.108728","DOIUrl":"https://doi.org/10.1016/j.sigpro.2022.108728","url":null,"abstract":"","PeriodicalId":21745,"journal":{"name":"Signal Process.","volume":"46 1","pages":"108728"},"PeriodicalIF":0.0,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77248478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Signal Process.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1