首页 > 最新文献

SIAM J. Sci. Comput.最新文献

英文 中文
A Ginzburg-Landau-H-1 Model and Its SAV Algorithm for Image Inpainting 图像补漆的Ginzburg-Landau-H-1模型及其SAV算法
Pub Date : 2023-06-15 DOI: 10.1007/s10915-023-02252-z
Xiangyun Bai, Jiebao Sun, Jie Shen, Wenjuan Yao, Zhichang Guo
{"title":"A Ginzburg-Landau-H-1 Model and Its SAV Algorithm for Image Inpainting","authors":"Xiangyun Bai, Jiebao Sun, Jie Shen, Wenjuan Yao, Zhichang Guo","doi":"10.1007/s10915-023-02252-z","DOIUrl":"https://doi.org/10.1007/s10915-023-02252-z","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76947690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Generalized Singleton Bound and List-Decoding Reed-Solomon Codes Beyond the Johnson Radius Johnson半径以外的广义单态定界和列解码Reed-Solomon码
Pub Date : 2023-05-23 DOI: 10.1137/20m138795x
Chong Shangguan, Itzhak Tamo
{"title":"Generalized Singleton Bound and List-Decoding Reed-Solomon Codes Beyond the Johnson Radius","authors":"Chong Shangguan, Itzhak Tamo","doi":"10.1137/20m138795x","DOIUrl":"https://doi.org/10.1137/20m138795x","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90286649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniform Restricted Chase Termination 制服限制追逐终止
Pub Date : 2023-05-23 DOI: 10.1137/20m1377035
Tomasz Gogacz, J. Marcinkowski, Andreas Pieris
{"title":"Uniform Restricted Chase Termination","authors":"Tomasz Gogacz, J. Marcinkowski, Andreas Pieris","doi":"10.1137/20m1377035","DOIUrl":"https://doi.org/10.1137/20m1377035","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91541223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Higher Order Extended Dynamic Mode Decomposition Based on the Structured Total Least Squares 基于结构化总最小二乘的高阶扩展动态模态分解
Pub Date : 2023-04-28 DOI: 10.1137/21m1463665
Weiyang Ding, J. Li
{"title":"Higher Order Extended Dynamic Mode Decomposition Based on the Structured Total Least Squares","authors":"Weiyang Ding, J. Li","doi":"10.1137/21m1463665","DOIUrl":"https://doi.org/10.1137/21m1463665","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90710856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Finite-Budget Allocation of Stratified Sampling with Adaptive Variance Reduction by Strata 基于分层自适应方差缩减的分层抽样动态有限预算分配
Pub Date : 2023-04-28 DOI: 10.1137/21m1430996
Chenxiao Song, Ray Kawai
{"title":"Dynamic Finite-Budget Allocation of Stratified Sampling with Adaptive Variance Reduction by Strata","authors":"Chenxiao Song, Ray Kawai","doi":"10.1137/21m1430996","DOIUrl":"https://doi.org/10.1137/21m1430996","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83826567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Shape Optimization of the Stokes Eigenvalue Problem Stokes特征值问题的形状优化
Pub Date : 2023-04-27 DOI: 10.1137/21m1451543
Jiajie Li, Shengfeng Zhu
{"title":"Shape Optimization of the Stokes Eigenvalue Problem","authors":"Jiajie Li, Shengfeng Zhu","doi":"10.1137/21m1451543","DOIUrl":"https://doi.org/10.1137/21m1451543","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89311227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Incomplete Cholesky Preconditioner Based on Orthogonal Approximations 基于正交逼近的不完全Cholesky预条件
Pub Date : 2023-04-27 DOI: 10.1137/21m1468334
Artem Napov
{"title":"An Incomplete Cholesky Preconditioner Based on Orthogonal Approximations","authors":"Artem Napov","doi":"10.1137/21m1468334","DOIUrl":"https://doi.org/10.1137/21m1468334","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79214859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamically Orthogonal Runge-Kutta Schemes with Perturbative Retractions for the Dynamical Low-Rank Approximation 具有微扰缩回的动态低秩逼近的动态正交龙格-库塔格式
Pub Date : 2023-04-27 DOI: 10.1137/21m1431229
A. Charous, Pierre FJ Lermusiaux
. Whether due to the sheer size of a computational domain, the fine resolution required, 5 or the multiples scales and stochasticity of the dynamics, the dimensionality of a system must often 6 be reduced so that problems of interest become computationally tractable. In this paper, we develop 7 retractions for time-integration schemes that efficiently and accurately evolve the dynamics of a 8 system’s low-rank approximation. Through differential geometry, we analyze the error incurred 9 at each time step due to the high-order curvature of the manifold of fixed-rank matrices. We first 10 obtain a novel, explicit, computationally inexpensive set of algorithms that we refer to as perturbative 11 retractions and show that the set converges to an ideal retraction that projects optimally and exactly 12 to the manifold of fixed-rank matrices by reducing what we define as the projection-retraction error. 13 Furthermore, each perturbative retraction itself exhibits high-order convergence to the best low- 14 rank approximation of the full-rank solution. Using perturbative retractions, we then develop a new 15 class of integration techniques that we refer to as dynamically orthogonal Runge-Kutta (DORK) 16 schemes. DORK schemes integrate along the nonlinear manifold, updating the subspace upon which 17 we project the system’s dynamics as it is integrated. Through numerical test cases, we demonstrate 18 our schemes for matrix addition, real-time data compression, and deterministic and stochastic partial 19 differential equations. We find that DORK schemes are highly accurate by incorporating knowledge 20 of the dynamic, nonlinear manifold’s high-order curvature and computationally efficient by limiting 21 the growing rank needed to represent the evolving dynamics. 22 schemes that account for the 774 evolution of the reduced-order integration space during the time-step. We show that 775 DORK schemes are (i) highly accurate by incorporating knowledge of the dynamic, 776 nonlinear manifold’s high-order curvature from stage to stage and (ii) computationally 777 efficient by limiting the growing rank needed to represent the evolving dynamics L . In 778 our real-time data compression example, we show that these retractions may be used 779 when the dynamics are data-driven (rather than model-driven), and the perturbative 780 retractions with high-order corrections drift from the best low-rank approximation at 781 a much slower rate than retractions with low-order corrections. Note that adjusting 782 how the dynamics are calculated to correct the drift in the first place is important 783 to obtain the most accurate scheme. Lastly, we show that the retractions may be 784 used in deterministic and stochastic differential equations: the dynamical low-rank 785 approximation and the retractions are agnostic to the nature of the mathematical 786 spaces we choose to compress, whether deterministic or stochastic. In both cases, the 787 low-rank approximation converges quickly not just to th
。无论是由于计算域的绝对大小,所需的精细分辨率,还是动力学的多重尺度和随机性,系统的维数必须经常降低,以便感兴趣的问题在计算上易于处理。在本文中,我们开发了7个时间积分方案,有效和准确地演化了一个8系统的低秩近似的动力学。利用微分几何的方法,分析了固定秩矩阵流形的高阶曲率在每个时间步所产生的误差。我们首先得到一个新颖的,显式的,计算成本低廉的算法集,我们称之为微扰缩回,并表明该集收敛于一个理想的缩回,通过减少我们定义的投影-缩回误差,该理想缩回最优且精确地投影到固定秩矩阵的流形上。13此外,每个微扰回缩本身表现出高阶收敛性,达到全阶解的最佳低- 14阶近似。利用微扰缩回,我们开发了一类新的积分技术,我们称之为动态正交龙格-库塔(DORK) 16格式。DORK方案沿着非线性流形集成,更新子空间,我们在其上投影系统的动力学,因为它是集成的。通过数值测试用例,我们展示了矩阵加法、实时数据压缩以及确定性和随机偏微分方程的方案。我们发现DORK方案通过结合动态非线性流形的高阶曲率的知识而具有很高的准确性,并且通过限制表示演化动力学所需的增长秩而具有很高的计算效率。在时间步长期间,有22种方案可以解释降阶积分空间的774次演化。我们表明,775 DORK方案(i)通过结合动态知识而高度精确,776非线性流形从阶段到阶段的高阶曲率,以及(ii)通过限制表示演化动力学L所需的增长秩来计算777效率。在我们的实时数据压缩示例中,我们表明,当动力学是数据驱动的(而不是模型驱动的)时,可以使用这些缩回,并且具有高阶修正的摄动缩回以较低的速度从最佳低秩近似漂移。注意,调整动力学计算的方式以纠正漂移,这对于获得最准确的方案非常重要。最后,我们证明了在确定性和随机微分方程中可以使用缩回:动态低秩785近似和缩回与我们选择压缩的数学786空间的性质无关,无论是确定性的还是随机的。在这两种情况下,787低秩近似不仅快速收敛到最佳近似,而且收敛到全秩解788。在随机情况下,这为非高斯统计非线性问题(例如,790[42,44,41,40])中的789不确定性量化提供了一种有效的方法。791
{"title":"Dynamically Orthogonal Runge-Kutta Schemes with Perturbative Retractions for the Dynamical Low-Rank Approximation","authors":"A. Charous, Pierre FJ Lermusiaux","doi":"10.1137/21m1431229","DOIUrl":"https://doi.org/10.1137/21m1431229","url":null,"abstract":". Whether due to the sheer size of a computational domain, the fine resolution required, 5 or the multiples scales and stochasticity of the dynamics, the dimensionality of a system must often 6 be reduced so that problems of interest become computationally tractable. In this paper, we develop 7 retractions for time-integration schemes that efficiently and accurately evolve the dynamics of a 8 system’s low-rank approximation. Through differential geometry, we analyze the error incurred 9 at each time step due to the high-order curvature of the manifold of fixed-rank matrices. We first 10 obtain a novel, explicit, computationally inexpensive set of algorithms that we refer to as perturbative 11 retractions and show that the set converges to an ideal retraction that projects optimally and exactly 12 to the manifold of fixed-rank matrices by reducing what we define as the projection-retraction error. 13 Furthermore, each perturbative retraction itself exhibits high-order convergence to the best low- 14 rank approximation of the full-rank solution. Using perturbative retractions, we then develop a new 15 class of integration techniques that we refer to as dynamically orthogonal Runge-Kutta (DORK) 16 schemes. DORK schemes integrate along the nonlinear manifold, updating the subspace upon which 17 we project the system’s dynamics as it is integrated. Through numerical test cases, we demonstrate 18 our schemes for matrix addition, real-time data compression, and deterministic and stochastic partial 19 differential equations. We find that DORK schemes are highly accurate by incorporating knowledge 20 of the dynamic, nonlinear manifold’s high-order curvature and computationally efficient by limiting 21 the growing rank needed to represent the evolving dynamics. 22 schemes that account for the 774 evolution of the reduced-order integration space during the time-step. We show that 775 DORK schemes are (i) highly accurate by incorporating knowledge of the dynamic, 776 nonlinear manifold’s high-order curvature from stage to stage and (ii) computationally 777 efficient by limiting the growing rank needed to represent the evolving dynamics L . In 778 our real-time data compression example, we show that these retractions may be used 779 when the dynamics are data-driven (rather than model-driven), and the perturbative 780 retractions with high-order corrections drift from the best low-rank approximation at 781 a much slower rate than retractions with low-order corrections. Note that adjusting 782 how the dynamics are calculated to correct the drift in the first place is important 783 to obtain the most accurate scheme. Lastly, we show that the retractions may be 784 used in deterministic and stochastic differential equations: the dynamical low-rank 785 approximation and the retractions are agnostic to the nature of the mathematical 786 spaces we choose to compress, whether deterministic or stochastic. In both cases, the 787 low-rank approximation converges quickly not just to th","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88368051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
(text{PIN}^{mathcal L}) : Preconditioned Inexact Newton with Learning Capability for Nonlinear System of Equations (text{PIN}^{mathcal L}) 非线性方程组的预条件非精确牛顿学习能力
Pub Date : 2023-04-27 DOI: 10.1137/22m1507942
L. Luo, X. Cai
{"title":"(text{PIN}^{mathcal L}) : Preconditioned Inexact Newton with Learning Capability for Nonlinear System of Equations","authors":"L. Luo, X. Cai","doi":"10.1137/22m1507942","DOIUrl":"https://doi.org/10.1137/22m1507942","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78016035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recursive Algorithms to Update a Numerical Basis Matrix of the Null Space of the Block Row, (Banded) Block Toeplitz, and Block Macaulay Matrix 块行、(带状)块Toeplitz和块Macaulay矩阵零空间数值基矩阵更新的递归算法
Pub Date : 2023-04-26 DOI: 10.1137/22m1495858
C. Vermeersch, B. Moor
{"title":"Recursive Algorithms to Update a Numerical Basis Matrix of the Null Space of the Block Row, (Banded) Block Toeplitz, and Block Macaulay Matrix","authors":"C. Vermeersch, B. Moor","doi":"10.1137/22m1495858","DOIUrl":"https://doi.org/10.1137/22m1495858","url":null,"abstract":"","PeriodicalId":21812,"journal":{"name":"SIAM J. Sci. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78804554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
SIAM J. Sci. Comput.
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1