Jian‐Jun Fan, Bo‐Chuan Zhang, Y. Niu, An‐Bo Luo, Yu-jie Hao
{"title":"Tracing the sedimentary response to the rifting and opening of the Meso‐Tethys Ocean","authors":"Jian‐Jun Fan, Bo‐Chuan Zhang, Y. Niu, An‐Bo Luo, Yu-jie Hao","doi":"10.1111/sed.13126","DOIUrl":"https://doi.org/10.1111/sed.13126","url":null,"abstract":"","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"22 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81669630","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohammed S. Hashim, K. Rose, H. F. Cohen, Stephen E. Kaczmarek
This study uses high temperature (215°C) dolomitization experiments to explore the effects of sodium (Na) and potassium (K), two common constituents of natural fluids, on dolomite formation rate, stoichiometry and crystallographic characteristics. In these experiments, aragonite ooids were dolomitized in Mg–Ca–Cl solutions with either no additional salt, or in solutions containing NaCl or KCl at different concentrations. Results show that Na solutions, and to a lesser extent K solutions, correlate with faster reaction rates and that Na at hypersaline fluid concentrations produces dolomites with higher stoichiometry, higher micro‐strain and lower cation ordering. Potassium has a different effect on the dolomite than Na at similar concentrations. Unlike Na, K does not cause micro‐strain but leads to dolomite with smaller unit cell parameters. It is proposed that Na and K catalyse dolomite precipitation and increase stoichiometry by weakening Mg hydration bonds which consequently facilitates Mg incorporation into dolomite. The decrease in dolomite cation ordering at higher Na concentrations may stem from the incorporation of Na into dolomite which strains the crystal lattice and reduces cation order. On the basis that high‐temperature experiments are applicable to natural dolomites, several implications pertinent to natural dolomites are drawn from the results. Firstly, the data suggest that the higher concentrations of Na and K in evaporative fluids (i.e. higher salinity) can explain why dolomite is generally more abundant and more stoichiometric in evaporative settings. Secondly, the results challenge a key prediction of the mixing zone dolomitization model by showing that higher Na and K concentrations increase, rather than decrease, both dolomitization rate and stoichiometry. Thirdly, the observed decrease in dolomite cation ordering with increasing Na and K concentrations implies that evaporative fluids would produce less stable dolomite that may be more prone to subsequent recrystallization and thus resetting of primary geochemical signatures.
{"title":"Effects of sodium and potassium concentrations on dolomite formation rate, stoichiometry and crystallographic characteristics","authors":"Mohammed S. Hashim, K. Rose, H. F. Cohen, Stephen E. Kaczmarek","doi":"10.1111/sed.13124","DOIUrl":"https://doi.org/10.1111/sed.13124","url":null,"abstract":"This study uses high temperature (215°C) dolomitization experiments to explore the effects of sodium (Na) and potassium (K), two common constituents of natural fluids, on dolomite formation rate, stoichiometry and crystallographic characteristics. In these experiments, aragonite ooids were dolomitized in Mg–Ca–Cl solutions with either no additional salt, or in solutions containing NaCl or KCl at different concentrations. Results show that Na solutions, and to a lesser extent K solutions, correlate with faster reaction rates and that Na at hypersaline fluid concentrations produces dolomites with higher stoichiometry, higher micro‐strain and lower cation ordering. Potassium has a different effect on the dolomite than Na at similar concentrations. Unlike Na, K does not cause micro‐strain but leads to dolomite with smaller unit cell parameters. It is proposed that Na and K catalyse dolomite precipitation and increase stoichiometry by weakening Mg hydration bonds which consequently facilitates Mg incorporation into dolomite. The decrease in dolomite cation ordering at higher Na concentrations may stem from the incorporation of Na into dolomite which strains the crystal lattice and reduces cation order. On the basis that high‐temperature experiments are applicable to natural dolomites, several implications pertinent to natural dolomites are drawn from the results. Firstly, the data suggest that the higher concentrations of Na and K in evaporative fluids (i.e. higher salinity) can explain why dolomite is generally more abundant and more stoichiometric in evaporative settings. Secondly, the results challenge a key prediction of the mixing zone dolomitization model by showing that higher Na and K concentrations increase, rather than decrease, both dolomitization rate and stoichiometry. Thirdly, the observed decrease in dolomite cation ordering with increasing Na and K concentrations implies that evaporative fluids would produce less stable dolomite that may be more prone to subsequent recrystallization and thus resetting of primary geochemical signatures.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"44 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74720287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michel Hasson, M. Marvin, Andrew W Gunn, A. Ielpi, M. Lapôtre
The recognition of meandering rivers in Earth's prevegetation stratigraphic record is hindered by an absence of depositional models specifically tailored to unvegetated single‐channel rivers. As a result, their abundance on the early Earth is currently unknown. Here, sedimentological studies of two modern meandering river reaches with unvegetated banks were conducted. Both reaches are located in arid basins of Nevada, USA. Stratigraphy was analysed in conjunction with satellite imagery and high‐resolution topographic data to understand how channels and floodplains record past flow conditions. Analyses of point‐bar and channel‐fill deposits showed that lateral accretion sets are not heterolithic but, rather, composed of mixed sand and sand‐sized mud aggregates (clumps of clay and silt) interpreted to have formed through flocculation. Levées are present but subdued. Notably, downstream‐migrating outer‐bank‐attached bars are prominent architectural features that may be common in unvegetated meandering rivers in arid landscapes elsewhere. The identification of such depositional elements in the stratigraphic record may enhance recognition of ancient unvegetated meandering rivers and improve reconstructions of palaeohydrology on early Earth and Mars.
{"title":"A depositional model for meandering rivers without land plants","authors":"Michel Hasson, M. Marvin, Andrew W Gunn, A. Ielpi, M. Lapôtre","doi":"10.1111/sed.13121","DOIUrl":"https://doi.org/10.1111/sed.13121","url":null,"abstract":"The recognition of meandering rivers in Earth's prevegetation stratigraphic record is hindered by an absence of depositional models specifically tailored to unvegetated single‐channel rivers. As a result, their abundance on the early Earth is currently unknown. Here, sedimentological studies of two modern meandering river reaches with unvegetated banks were conducted. Both reaches are located in arid basins of Nevada, USA. Stratigraphy was analysed in conjunction with satellite imagery and high‐resolution topographic data to understand how channels and floodplains record past flow conditions. Analyses of point‐bar and channel‐fill deposits showed that lateral accretion sets are not heterolithic but, rather, composed of mixed sand and sand‐sized mud aggregates (clumps of clay and silt) interpreted to have formed through flocculation. Levées are present but subdued. Notably, downstream‐migrating outer‐bank‐attached bars are prominent architectural features that may be common in unvegetated meandering rivers in arid landscapes elsewhere. The identification of such depositional elements in the stratigraphic record may enhance recognition of ancient unvegetated meandering rivers and improve reconstructions of palaeohydrology on early Earth and Mars.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"61 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89828923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuanyuan Chen, B. Deng, Y. Saito, Zhanghua Wang, Xiaoqiang Yang, Jiaxue Wu
To understand the Holocene sedimentary evolution of the Pearl River associated delta–estuary–shelf system, high‐resolution seismic data were acquired from Lingdingyang Bay to the inner shelf. A Pearl‐derived Holocene subaqueous clinoform developed over the pre‐Holocene incised channel/valley network. Overlying the Holocene ravinement surface, progradational highstand and acoustically semi‐transparent or transparent transgressive system tracts are separated by a maximum flooding surface. Restricted and thick in‐channel/in‐valley retrogressive deposits represent an earlier transgressive deposit. Displaying a westward‐oriented along‐shore extent, the highstand sediment accumulated asymmetrically within 30 m water depths, corresponding to a modern hydrodynamic environment. The wedge‐shaped highstand unit thickened landward with a depocentre (>15 m) located in western Lingdingyang Bay, possibly because of higher sediment trap efficiency inside the salinity front. Preliminary analyses suggest that the Pearl River has been trapping sediment to fill its extensive estuarine system for most of the Holocene and its sediment trap efficiency is greater since the sea‐level highstand. Since ca 7.5 ka bp, the total volume of highstand sediment accumulated in the entire delta‐estuary‐shelf dispersal system was approximately 128.36 × 109 m3. The calculated highstand riverine sediment flux was 16.01 to 16.50 Mt/yr. This value is equivalent to approximately one‐fifth of the flux that occurred prior to widespread dam construction and likely related to late‐Holocene intensified anthropogenic influence in South China. Since ca 7.5 ka bp, only ca 35% of the Pearl‐derived sediment has been dispersed to offshore shelf areas from the delta‐estuary system. With the dramatic decrease in river sediment discharge in recent decades, a larger fraction of Pearl‐derived sediment transported to the shelf might have been interrupted and changed.
{"title":"Pearl River sediment dispersal over its associated delta‐estuary‐shelf system during the Holocene","authors":"Yuanyuan Chen, B. Deng, Y. Saito, Zhanghua Wang, Xiaoqiang Yang, Jiaxue Wu","doi":"10.1111/sed.13123","DOIUrl":"https://doi.org/10.1111/sed.13123","url":null,"abstract":"To understand the Holocene sedimentary evolution of the Pearl River associated delta–estuary–shelf system, high‐resolution seismic data were acquired from Lingdingyang Bay to the inner shelf. A Pearl‐derived Holocene subaqueous clinoform developed over the pre‐Holocene incised channel/valley network. Overlying the Holocene ravinement surface, progradational highstand and acoustically semi‐transparent or transparent transgressive system tracts are separated by a maximum flooding surface. Restricted and thick in‐channel/in‐valley retrogressive deposits represent an earlier transgressive deposit. Displaying a westward‐oriented along‐shore extent, the highstand sediment accumulated asymmetrically within 30 m water depths, corresponding to a modern hydrodynamic environment. The wedge‐shaped highstand unit thickened landward with a depocentre (>15 m) located in western Lingdingyang Bay, possibly because of higher sediment trap efficiency inside the salinity front. Preliminary analyses suggest that the Pearl River has been trapping sediment to fill its extensive estuarine system for most of the Holocene and its sediment trap efficiency is greater since the sea‐level highstand. Since ca 7.5 ka bp, the total volume of highstand sediment accumulated in the entire delta‐estuary‐shelf dispersal system was approximately 128.36 × 109 m3. The calculated highstand riverine sediment flux was 16.01 to 16.50 Mt/yr. This value is equivalent to approximately one‐fifth of the flux that occurred prior to widespread dam construction and likely related to late‐Holocene intensified anthropogenic influence in South China. Since ca 7.5 ka bp, only ca 35% of the Pearl‐derived sediment has been dispersed to offshore shelf areas from the delta‐estuary system. With the dramatic decrease in river sediment discharge in recent decades, a larger fraction of Pearl‐derived sediment transported to the shelf might have been interrupted and changed.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"8 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88766566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alkaline lakes (pH > 9) are among the few modern sedimentary environments that are hydrochemically favourable for low‐temperature dolomite formation. While Mg‐clays and Mg‐evaporites also form more easily in alkaline environments, few studies have focused on how the kinetically inhibited dolomite wins the competition for Mg2+. Here, a basin‐wide survey of the distribution, paragenesis and stable C, O and Mg isotopes of main Mg‐rich minerals in the Late Palaeozoic saline alkaline lake deposit of the north‐west Junggar Basin, north‐west China, is conducted to study the influence of the formation and diagenesis of eitelite, northupite and Mg‐clays on dolomite formation. Large, isolated dolomite crystals (20 to 70 μm in diameter), show positive δ13C values (ranging from +1 to +7‰) and a restricted distribution in the mudstones of the lake‐transitional zone. These crystals have been interpreted as organogenic dolomite driven by methanogenesis via fermentation of organic substrates. The δ18O values of dolomitic mudstones (from −7.4 to +3.4‰), calcitic mudstones (from −15.1 to −3.3‰) and bedded Na‐carbonate evaporites (from +0.08 to +3.7‰), together with their Mg isotopic compositions, suggest that dolomite was not enriched in the most concentrated environments or during stages with most Mg sources, but in the organic‐rich deposits containing few other authigenic Mg‐rich minerals. Dolomite is at a competitive disadvantage for Mg2+ ions compared to Mg‐evaporite and Mg‐clay minerals due to its slow crystallization rates and the deficiency of micritic calcium carbonate precursors. However, it can nucleate and progressively grow into large crystals (>20 μm) if bacterial methanogenesis could effectively lower porewater pH (<8.5) and induce the dissolution of generated eitelite, northupite or Mg‐clays. These findings suggest that high salinity and/or high alkalinity are not always favourable conditions for dolomite formation and highlight the active role of pH fluctuations in inducing low‐temperature dolomite formation.
{"title":"Constraints on dolomite formation in a Late Palaeozoic saline alkaline lake deposit, Junggar Basin, north‐west China","authors":"Pei Guo, Huaguo Wen, M. Sánchez‐Román","doi":"10.1111/sed.13122","DOIUrl":"https://doi.org/10.1111/sed.13122","url":null,"abstract":"Alkaline lakes (pH > 9) are among the few modern sedimentary environments that are hydrochemically favourable for low‐temperature dolomite formation. While Mg‐clays and Mg‐evaporites also form more easily in alkaline environments, few studies have focused on how the kinetically inhibited dolomite wins the competition for Mg2+. Here, a basin‐wide survey of the distribution, paragenesis and stable C, O and Mg isotopes of main Mg‐rich minerals in the Late Palaeozoic saline alkaline lake deposit of the north‐west Junggar Basin, north‐west China, is conducted to study the influence of the formation and diagenesis of eitelite, northupite and Mg‐clays on dolomite formation. Large, isolated dolomite crystals (20 to 70 μm in diameter), show positive δ13C values (ranging from +1 to +7‰) and a restricted distribution in the mudstones of the lake‐transitional zone. These crystals have been interpreted as organogenic dolomite driven by methanogenesis via fermentation of organic substrates. The δ18O values of dolomitic mudstones (from −7.4 to +3.4‰), calcitic mudstones (from −15.1 to −3.3‰) and bedded Na‐carbonate evaporites (from +0.08 to +3.7‰), together with their Mg isotopic compositions, suggest that dolomite was not enriched in the most concentrated environments or during stages with most Mg sources, but in the organic‐rich deposits containing few other authigenic Mg‐rich minerals. Dolomite is at a competitive disadvantage for Mg2+ ions compared to Mg‐evaporite and Mg‐clay minerals due to its slow crystallization rates and the deficiency of micritic calcium carbonate precursors. However, it can nucleate and progressively grow into large crystals (>20 μm) if bacterial methanogenesis could effectively lower porewater pH (<8.5) and induce the dissolution of generated eitelite, northupite or Mg‐clays. These findings suggest that high salinity and/or high alkalinity are not always favourable conditions for dolomite formation and highlight the active role of pH fluctuations in inducing low‐temperature dolomite formation.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"132 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88818882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Petrovic, J. Reijmer, Sayed Hassan Majed Alsaihati, Dominik Nommensen, V. Vahrenkamp
Changes in neritic carbonate production and sediment transport off platforms are related to climate variations, sea‐level fluctuations and tectonic processes. Canyon systems marking the platform slopes represent critical source‐to‐sink pathways transporting shallow‐water sediments basinward. However, these export systems and related processes are primarily studied on platform slopes in humid to tropical climate settings. A newly discovered canyon system on the leeward margin of the Al Wajh platform (north‐east Red Sea) represents the ideal laboratory to investigate source‐to‐sink pathway dynamics in an arid climate that prevailed since the Late Pleistocene. A high‐resolution bathymetry map was established to characterize the slope morphology. The system displays a U‐shaped, 10 km long main channel dominantly sourced by the north‐west/south‐east running outer channel and two smaller 2 to 3 km long canyons. The latter are positioned perpendicular to the main canyon. A 4 km wide head scarp at the reef edge and dozens of amphitheatre‐shaped scarps along the mid to lower slope suggest significant slope failures over time. The analysis of four sediment cores collected on a profile down the canyon revealed sedimentation rates of 26 cm/ka at the mid‐slope to 9.4 cm/ka in the basin. Three main sediment‐export processes were identified: (i) sandy and neritic component‐poor turbidites; (ii) winnowing of strontium‐rich carbonate fines through surface currents; and (iii) remobilized carbonate fines on the upper slope. As of the Last Glacial, turbidites are predominantly deposited during times of significant sea‐level instability, both rises and falls, whereas their flat‐topped‐tropical counterparts show a higher turbidite frequency during highstands. Strontium‐rich carbonate fines are exported similarly through time in both climate settings. Overall, sediment export is controlled by: (i) the platform morphology (flat‐topped versus rimmed lagoon); (ii) variations in sediment production; (iii) sea‐level variations (exposure or flooding of sediment production areas); and (iv) the interaction between the sedimentary system and atmospheric changes (sediment production and delivery).
{"title":"Sediment dynamics and geomorphology of a submarine carbonate platform canyon system situated in an arid climate setting","authors":"A. Petrovic, J. Reijmer, Sayed Hassan Majed Alsaihati, Dominik Nommensen, V. Vahrenkamp","doi":"10.1111/sed.13120","DOIUrl":"https://doi.org/10.1111/sed.13120","url":null,"abstract":"Changes in neritic carbonate production and sediment transport off platforms are related to climate variations, sea‐level fluctuations and tectonic processes. Canyon systems marking the platform slopes represent critical source‐to‐sink pathways transporting shallow‐water sediments basinward. However, these export systems and related processes are primarily studied on platform slopes in humid to tropical climate settings. A newly discovered canyon system on the leeward margin of the Al Wajh platform (north‐east Red Sea) represents the ideal laboratory to investigate source‐to‐sink pathway dynamics in an arid climate that prevailed since the Late Pleistocene. A high‐resolution bathymetry map was established to characterize the slope morphology. The system displays a U‐shaped, 10 km long main channel dominantly sourced by the north‐west/south‐east running outer channel and two smaller 2 to 3 km long canyons. The latter are positioned perpendicular to the main canyon. A 4 km wide head scarp at the reef edge and dozens of amphitheatre‐shaped scarps along the mid to lower slope suggest significant slope failures over time. The analysis of four sediment cores collected on a profile down the canyon revealed sedimentation rates of 26 cm/ka at the mid‐slope to 9.4 cm/ka in the basin. Three main sediment‐export processes were identified: (i) sandy and neritic component‐poor turbidites; (ii) winnowing of strontium‐rich carbonate fines through surface currents; and (iii) remobilized carbonate fines on the upper slope. As of the Last Glacial, turbidites are predominantly deposited during times of significant sea‐level instability, both rises and falls, whereas their flat‐topped‐tropical counterparts show a higher turbidite frequency during highstands. Strontium‐rich carbonate fines are exported similarly through time in both climate settings. Overall, sediment export is controlled by: (i) the platform morphology (flat‐topped versus rimmed lagoon); (ii) variations in sediment production; (iii) sea‐level variations (exposure or flooding of sediment production areas); and (iv) the interaction between the sedimentary system and atmospheric changes (sediment production and delivery).","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"43 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81306292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Modern fluvial deposits can be affected by early diagenetic element mobilization at redox boundaries between oxygenated and oxygen‐free zones near the groundwater level. The visible product of redox transformation of Fe is the sediment colour. Distinct red and black sediment layers have been studied in eight shallow (<4.2 m depth) sections in the floodplain of Morava River, Czechia. The aim was to investigate the composition, origin, rates of formation and stratigraphic significance of the red strata using bulk‐rock analytical methods, radiocarbon dating, optical and scanning electron microscopy coupled with in situ (energy‐dispersive X‐ray scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry) geochemistry. The coloured layers, in places well‐cemented, developed in permeable sands and gravels above the water table, close to the boundary with overlying less permeable floodplain sandy silts. Their colour is due to Fe and Mn oxyhydroxides (goethite, haematite, todorokite and birnessite) coatings of framework grains. Black, Mn‐rich layers occur stratigraphically higher than the red, Fe‐rich ones. The coatings are a few‐hundred microns thick at maximum, often botryoidal, composed of alternating Fe‐rich and Mn‐rich laminae enriched in As, Mo, Sb, P, Cu and U. The coatings formed under suboxic conditions due to Fe and Mn oxyhydroxide cycling, driven partly by microbial activity, at the groundwater‐related redox boundary which resulted in the distinct vertical arrangement of the black and red layers. Being markedly enriched in As bound to Fe‐oxyhydroxides and exposed to fluctuating redox conditions, the coloured strata can potentially release As to groundwater and represent serious environmental hazards. Radiocarbon ages suggest that the groundwater‐type red beds can occur extremely quickly, over a few hundred years. It is assumed that, under suitable circumstances, this reddening can be preserved in the rock record, and represent a specific model for the development of continental red beds.
{"title":"Groundwater red beds in Holocene fluvial sediments as a product of iron and manganese redox cycling; Morava River, Czechia","authors":"O. Bábek, O. Sracek, D. Všianský, M. Holá","doi":"10.1111/sed.13119","DOIUrl":"https://doi.org/10.1111/sed.13119","url":null,"abstract":"Modern fluvial deposits can be affected by early diagenetic element mobilization at redox boundaries between oxygenated and oxygen‐free zones near the groundwater level. The visible product of redox transformation of Fe is the sediment colour. Distinct red and black sediment layers have been studied in eight shallow (<4.2 m depth) sections in the floodplain of Morava River, Czechia. The aim was to investigate the composition, origin, rates of formation and stratigraphic significance of the red strata using bulk‐rock analytical methods, radiocarbon dating, optical and scanning electron microscopy coupled with in situ (energy‐dispersive X‐ray scanning electron microscopy and laser ablation inductively coupled plasma mass spectrometry) geochemistry. The coloured layers, in places well‐cemented, developed in permeable sands and gravels above the water table, close to the boundary with overlying less permeable floodplain sandy silts. Their colour is due to Fe and Mn oxyhydroxides (goethite, haematite, todorokite and birnessite) coatings of framework grains. Black, Mn‐rich layers occur stratigraphically higher than the red, Fe‐rich ones. The coatings are a few‐hundred microns thick at maximum, often botryoidal, composed of alternating Fe‐rich and Mn‐rich laminae enriched in As, Mo, Sb, P, Cu and U. The coatings formed under suboxic conditions due to Fe and Mn oxyhydroxide cycling, driven partly by microbial activity, at the groundwater‐related redox boundary which resulted in the distinct vertical arrangement of the black and red layers. Being markedly enriched in As bound to Fe‐oxyhydroxides and exposed to fluctuating redox conditions, the coloured strata can potentially release As to groundwater and represent serious environmental hazards. Radiocarbon ages suggest that the groundwater‐type red beds can occur extremely quickly, over a few hundred years. It is assumed that, under suitable circumstances, this reddening can be preserved in the rock record, and represent a specific model for the development of continental red beds.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"2006 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86975018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swiad Snieder, C. Griffiths, J. Howell, A. Hartley, A. Owen
Stratigraphic forward modelling has been used to quantify the sensitivity of sandbody connectivity in a distributive fluvial system to changes in sediment supply and lake level. Recent stratigraphic forward modelling using SedsimX from StrataMod Pty Limited of the Oligocene to Miocene Huesca distributive fluvial system in northern Spain was used as a base‐case for this sensitivity analysis. Based on literature research and initial modelling, a sediment supply sensitivity range of 0.22 to 21.85 km3/kyr and lake‐level sensitivity range of −1000 to 1000 mm/kyr were used. Results show that the stratigraphic architecture of the modelled distributive fluvial system is more sensitive to changes in sediment supply than to changes in lake level. While an increase in the rate of sediment supply results in an increase in preserved average grain size, aggradation rates and sandbody connectivity at the same distance from the apex, the average grain size, aggradation rate and sandbody connectivity all decrease with increasing distance from fan apex. The main difference in the stratigraphic architecture can be found in the proximal zones. Only oversupplied models, with much higher sediment supply than the base‐case, deposited fully amalgamated channelized deposits with laterally continuous, tabular beds with occasional scoured surfaces. Models with base‐case sediment supply contain channelized sandy deposits within a fine‐grained floodplain environment. Models with sediment supply much lower than the base‐case had no deposition in the proximal zone. Lake‐level rise leads to reduced distal erosion of sediments, concentration of silts close to the lake shore, and higher aggradation rates and thicker sandbodies in the proximal zone. The sensitivity analysis highlights that the parameters governing the formation of distributive fluvial systems have different weightings but are ultimately all interconnected and interdependent. This quantitative framework can be used as a predictive tool for subsurface exploration in distributive fluvial systems.
{"title":"Quantifying the sensitivity of distributive fluvial systems to changes in sediment supply and lake level using stratigraphic forward modelling","authors":"Swiad Snieder, C. Griffiths, J. Howell, A. Hartley, A. Owen","doi":"10.1111/sed.13118","DOIUrl":"https://doi.org/10.1111/sed.13118","url":null,"abstract":"Stratigraphic forward modelling has been used to quantify the sensitivity of sandbody connectivity in a distributive fluvial system to changes in sediment supply and lake level. Recent stratigraphic forward modelling using SedsimX from StrataMod Pty Limited of the Oligocene to Miocene Huesca distributive fluvial system in northern Spain was used as a base‐case for this sensitivity analysis. Based on literature research and initial modelling, a sediment supply sensitivity range of 0.22 to 21.85 km3/kyr and lake‐level sensitivity range of −1000 to 1000 mm/kyr were used. Results show that the stratigraphic architecture of the modelled distributive fluvial system is more sensitive to changes in sediment supply than to changes in lake level. While an increase in the rate of sediment supply results in an increase in preserved average grain size, aggradation rates and sandbody connectivity at the same distance from the apex, the average grain size, aggradation rate and sandbody connectivity all decrease with increasing distance from fan apex. The main difference in the stratigraphic architecture can be found in the proximal zones. Only oversupplied models, with much higher sediment supply than the base‐case, deposited fully amalgamated channelized deposits with laterally continuous, tabular beds with occasional scoured surfaces. Models with base‐case sediment supply contain channelized sandy deposits within a fine‐grained floodplain environment. Models with sediment supply much lower than the base‐case had no deposition in the proximal zone. Lake‐level rise leads to reduced distal erosion of sediments, concentration of silts close to the lake shore, and higher aggradation rates and thicker sandbodies in the proximal zone. The sensitivity analysis highlights that the parameters governing the formation of distributive fluvial systems have different weightings but are ultimately all interconnected and interdependent. This quantitative framework can be used as a predictive tool for subsurface exploration in distributive fluvial systems.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"1 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89623842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Submarine levéed channels are often observed in submarine fans, although submarine fans without continuous levéed channels are also common depending on the composition of supplied sediments, particularly the proportion of muddy/sandy materials. However, parameters governing the inception of levéed channels have not yet been studied. Furthermore, depositional levéed channel topography has not been simulated in experimental flumes in any previous study conducted with dilute flows (flow concentration <10%). Herein, four experimental series were conducted (Series A, B, C and D) to simulate depositional submarine channels and to study their formative conditions. A mixture of sediment and saline water was used in the experiments, and both the width of an outlet diffuser and flow discharge rate were varied in the experimental series. A topography composed of a channel with two ridges resembling natural depositional submarine channels with levées was formed in all experiments. Comparisons between the experimental topographies and natural submarine fans revealed that two of the four experimental series produced channel levées with length to width ratios similar to those produced by natural systems. An experiment with half the outlet size produced a channel two times deeper (4.5 cm against 2.0 cm and 2.2 cm) as compared to other experiments. The flow discharge rate and outlet width were half of those observed in Series A and B. Furthermore, salt was removed from the initial mixture for one of the experiments, resulting in high natural levées with a short channel. This study demonstrated that dilute flows could form purely depositional channel levées without precursor or resultant erosive features. In addition, results revealed that the formation of submarine channels is related to two factors: channel width and muddy suspended sediment.
{"title":"Conditions of submarine levéed channel inception: Examination by flume experiments","authors":"Justine Poppeschi, K. Nakata, H. Naruse","doi":"10.1111/sed.13117","DOIUrl":"https://doi.org/10.1111/sed.13117","url":null,"abstract":"Submarine levéed channels are often observed in submarine fans, although submarine fans without continuous levéed channels are also common depending on the composition of supplied sediments, particularly the proportion of muddy/sandy materials. However, parameters governing the inception of levéed channels have not yet been studied. Furthermore, depositional levéed channel topography has not been simulated in experimental flumes in any previous study conducted with dilute flows (flow concentration <10%). Herein, four experimental series were conducted (Series A, B, C and D) to simulate depositional submarine channels and to study their formative conditions. A mixture of sediment and saline water was used in the experiments, and both the width of an outlet diffuser and flow discharge rate were varied in the experimental series. A topography composed of a channel with two ridges resembling natural depositional submarine channels with levées was formed in all experiments. Comparisons between the experimental topographies and natural submarine fans revealed that two of the four experimental series produced channel levées with length to width ratios similar to those produced by natural systems. An experiment with half the outlet size produced a channel two times deeper (4.5 cm against 2.0 cm and 2.2 cm) as compared to other experiments. The flow discharge rate and outlet width were half of those observed in Series A and B. Furthermore, salt was removed from the initial mixture for one of the experiments, resulting in high natural levées with a short channel. This study demonstrated that dilute flows could form purely depositional channel levées without precursor or resultant erosive features. In addition, results revealed that the formation of submarine channels is related to two factors: channel width and muddy suspended sediment.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"54 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75508570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. C. Paisani, Rafael Manica, Marcos Cesar Pereira Santos, Rafaela Ana Rech Rodrigues
In tropical and subtropical zones, sandy colluviums composed of soil aggregates are highly significant for the understanding of depositional processes in the natural realm. The formation processes of soil aggregates–colluviums (pedosediments in other climate zones) are poorly defined. Deeper knowledge on the origin of soil aggregates–colluviums from low‐density or high‐density overland flows is essential for improved understanding of colluviums found in modern, Quaternary and ancient stratigraphic records. The understanding of depositional processes of soil aggregates–colluviums has been integrated into this study by combining macrostratigraphy and microstratigraphy and laboratory experimental techniques. The actualism principle was applied using a sedimentological description of a modern soil aggregates–colluvium deposit generated by overland flows. In addition, physical experiments were performed to simulate the natural sedimentation processes of overland flows composed of various sediment concentrations. The results indicate the maximum grain size (granules and pebbles) of the soil aggregates–colluvium beds originating from high competence overland flows involving large volumes of local rainfall (storms). Overland flows are responsible for laminated beds of soil aggregates–colluviums; however, the laminations are heterogeneous sequences compared to those of low‐density flows, which have homogeneous sequences. The microstratigraphy of the natural, modern soil aggregates–colluviums shows varied structures in overland flow laminations, implying several types of flow density. The internal organization of the laminae suggests that the accretion of the colluvium deposit occurred through high‐density flows and high to low‐transitional density flows. Low‐density flows were less frequent and may constitute either single or more diluted tail flows. Finally, overland flow can generate facies with similar end members to mass movements, being distinguished only by bed thickness. Linking field observations with experimental results, as in the present study, leads to deeper understanding of overland flow sedimentation processes, especially in tropical and subtropical zones.
{"title":"Modern soil aggregates–colluvium generated by overland flow – stratigraphy and physical experiments","authors":"J. C. Paisani, Rafael Manica, Marcos Cesar Pereira Santos, Rafaela Ana Rech Rodrigues","doi":"10.1111/sed.13116","DOIUrl":"https://doi.org/10.1111/sed.13116","url":null,"abstract":"In tropical and subtropical zones, sandy colluviums composed of soil aggregates are highly significant for the understanding of depositional processes in the natural realm. The formation processes of soil aggregates–colluviums (pedosediments in other climate zones) are poorly defined. Deeper knowledge on the origin of soil aggregates–colluviums from low‐density or high‐density overland flows is essential for improved understanding of colluviums found in modern, Quaternary and ancient stratigraphic records. The understanding of depositional processes of soil aggregates–colluviums has been integrated into this study by combining macrostratigraphy and microstratigraphy and laboratory experimental techniques. The actualism principle was applied using a sedimentological description of a modern soil aggregates–colluvium deposit generated by overland flows. In addition, physical experiments were performed to simulate the natural sedimentation processes of overland flows composed of various sediment concentrations. The results indicate the maximum grain size (granules and pebbles) of the soil aggregates–colluvium beds originating from high competence overland flows involving large volumes of local rainfall (storms). Overland flows are responsible for laminated beds of soil aggregates–colluviums; however, the laminations are heterogeneous sequences compared to those of low‐density flows, which have homogeneous sequences. The microstratigraphy of the natural, modern soil aggregates–colluviums shows varied structures in overland flow laminations, implying several types of flow density. The internal organization of the laminae suggests that the accretion of the colluvium deposit occurred through high‐density flows and high to low‐transitional density flows. Low‐density flows were less frequent and may constitute either single or more diluted tail flows. Finally, overland flow can generate facies with similar end members to mass movements, being distinguished only by bed thickness. Linking field observations with experimental results, as in the present study, leads to deeper understanding of overland flow sedimentation processes, especially in tropical and subtropical zones.","PeriodicalId":21838,"journal":{"name":"Sedimentology","volume":"15 1","pages":""},"PeriodicalIF":3.5,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79175208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}