Temporal control of transgenes has advanced biomedical interventions, including in vivo reprogramming, often utilizing the doxycycline (Dox)-mediated Tet-ON system. Here, we developed the Dox-mediated Tet-ON or complementary Tet-OFF counterpart to thoroughly investigate spatial and temporal transgene regulation in adult tissues, revealing inherent limitations and unexpected capabilities of each system. In stark contrast with the Tet-ON system, which was effective only in particular tissues and cell types, primarily epithelial cells, the Tet-OFF system proved capable of gene induction across diverse cell types. Despite the drawback of the Tet-OFF system in inducibility and tunability identified in our study, we demonstrated that use of tetracycline (Tc) effectively addresses these issues, possibly through its pharmacologic properties. Our data suggest that the Tc-mediated Tet-OFF system not only enables more versatile control of transgene expression but also offers a more biocompatible alternative for in vivo applications such as tissue regeneration and organismal rejuvenation.
{"title":"A versatile in vivo platform for reversible control of transgene expression in adult tissues.","authors":"Jumpei Taguchi, Yosuke Yamada, Sho Ohta, Fumie Nakasuka, Takuya Yamamoto, Manabu Ozawa, Yasuhiro Yamada","doi":"10.1016/j.stemcr.2024.11.003","DOIUrl":"10.1016/j.stemcr.2024.11.003","url":null,"abstract":"<p><p>Temporal control of transgenes has advanced biomedical interventions, including in vivo reprogramming, often utilizing the doxycycline (Dox)-mediated Tet-ON system. Here, we developed the Dox-mediated Tet-ON or complementary Tet-OFF counterpart to thoroughly investigate spatial and temporal transgene regulation in adult tissues, revealing inherent limitations and unexpected capabilities of each system. In stark contrast with the Tet-ON system, which was effective only in particular tissues and cell types, primarily epithelial cells, the Tet-OFF system proved capable of gene induction across diverse cell types. Despite the drawback of the Tet-OFF system in inducibility and tunability identified in our study, we demonstrated that use of tetracycline (Tc) effectively addresses these issues, possibly through its pharmacologic properties. Our data suggest that the Tc-mediated Tet-OFF system not only enables more versatile control of transgene expression but also offers a more biocompatible alternative for in vivo applications such as tissue regeneration and organismal rejuvenation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102373"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784451/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142791708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14Epub Date: 2024-12-19DOI: 10.1016/j.stemcr.2024.11.009
Samuel P Moss, Ezgi Bakirci, Adam W Feinberg
Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages. Additionally, we will explore how biofabrication strategies can manipulate the cell composition, 3D organization, and scale-up of organoids, thus improving their utility for disease modeling, drug screening, and regenerative medicine applications.
{"title":"Engineering the 3D structure of organoids.","authors":"Samuel P Moss, Ezgi Bakirci, Adam W Feinberg","doi":"10.1016/j.stemcr.2024.11.009","DOIUrl":"10.1016/j.stemcr.2024.11.009","url":null,"abstract":"<p><p>Organoids form through the sel f-organizing capabilities of stem cells to produce a variety of differentiated cell and tissue types. Most organoid models, however, are limited in terms of the structure and function of the tissues that form, in part because it is difficult to regulate the cell type, arrangement, and cell-cell/cell-matrix interactions within these systems. In this article, we will discuss the engineering approaches to generate more complex organoids with improved function and translational relevance, as well as their advantages and disadvantages. Additionally, we will explore how biofabrication strategies can manipulate the cell composition, 3D organization, and scale-up of organoids, thus improving their utility for disease modeling, drug screening, and regenerative medicine applications.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102379"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784486/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14Epub Date: 2024-12-12DOI: 10.1016/j.stemcr.2024.11.006
Madeline K Eiken, Charlie J Childs, Lindy K Brastrom, Tristan Frum, Eleanor M Plaster, Donia W Ahmed, Ryan C Spencer, Orren Shachaf, Suzanne Pfeiffer, Justin E Levine, Konstantinos-Dionysios Alysandratos, Darrell N Kotton, Jason R Spence, Claudia Loebel
Human induced pluripotent stem cell (iPSC)-derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse sarcoma-derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in synthetic hydrogels, which supports their growth. Thus, the synthetic hydrogels described here allow us to de-couple exogenous and nascent ECM to interrogate the role of ECM in organoid formation.
{"title":"Nascent matrix deposition supports alveolar organoid formation from aggregates in synthetic hydrogels.","authors":"Madeline K Eiken, Charlie J Childs, Lindy K Brastrom, Tristan Frum, Eleanor M Plaster, Donia W Ahmed, Ryan C Spencer, Orren Shachaf, Suzanne Pfeiffer, Justin E Levine, Konstantinos-Dionysios Alysandratos, Darrell N Kotton, Jason R Spence, Claudia Loebel","doi":"10.1016/j.stemcr.2024.11.006","DOIUrl":"10.1016/j.stemcr.2024.11.006","url":null,"abstract":"<p><p>Human induced pluripotent stem cell (iPSC)-derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse sarcoma-derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties. We find that the aggregated organoids secrete their own nascent extracellular matrix (ECM) both in the microwells and upon embedding in synthetic hydrogels, which supports their growth. Thus, the synthetic hydrogels described here allow us to de-couple exogenous and nascent ECM to interrogate the role of ECM in organoid formation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102376"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784465/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142822704","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14Epub Date: 2024-12-19DOI: 10.1016/j.stemcr.2024.11.010
Huijie Yuan, Conor W Mitchell, Andrew T Ferenbach, Maria Teresa Bonati, Agnese Feresin, Paul J Benke, Queenie K G Tan, Daan M F van Aalten
O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants. Here, we develop a double-fluorescence strategy in mouse embryonic stem cells to measure disruption of O-GlcNAc homeostasis by quantifying the effects of variants on endogenous OGT expression. OGT-CDG variants generally elicited a lower feedback response than wild-type and Genome Aggregation Database (gnomAD) OGT variants. This approach was then used to dissect new putative OGT-CDG variants from pathogenic background variants in other disease-associated genes. Our work enables the prediction of pathogenicity for rapidly emerging de novo OGT-CDG variants and points to reduced disruption of O-GlcNAc homeostasis as a common mechanism underpinning OGT-CDG.
{"title":"Exploiting O-GlcNAc dyshomeostasis to screen O-GlcNAc transferase intellectual disability variants.","authors":"Huijie Yuan, Conor W Mitchell, Andrew T Ferenbach, Maria Teresa Bonati, Agnese Feresin, Paul J Benke, Queenie K G Tan, Daan M F van Aalten","doi":"10.1016/j.stemcr.2024.11.010","DOIUrl":"10.1016/j.stemcr.2024.11.010","url":null,"abstract":"<p><p>O-GlcNAcylation is an essential protein modification catalyzed by O-GlcNAc transferase (OGT). Missense variants in OGT are linked to a novel intellectual disability syndrome known as OGT congenital disorder of glycosylation (OGT-CDG). The mechanisms by which OGT missense variants lead to this heterogeneous syndrome are not understood, and no unified method exists for dissecting pathogenic from non-pathogenic variants. Here, we develop a double-fluorescence strategy in mouse embryonic stem cells to measure disruption of O-GlcNAc homeostasis by quantifying the effects of variants on endogenous OGT expression. OGT-CDG variants generally elicited a lower feedback response than wild-type and Genome Aggregation Database (gnomAD) OGT variants. This approach was then used to dissect new putative OGT-CDG variants from pathogenic background variants in other disease-associated genes. Our work enables the prediction of pathogenicity for rapidly emerging de novo OGT-CDG variants and points to reduced disruption of O-GlcNAc homeostasis as a common mechanism underpinning OGT-CDG.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102380"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784489/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142872772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14Epub Date: 2024-12-26DOI: 10.1016/j.stemcr.2024.11.012
Zhiju Zhao, Fanzhu Zeng, Yage Nie, Gang Lu, He Xu, He En, Shanshan Gu, Wai-Yee Chan, Nan Cao, Jia Wang
Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge. Here, by systematic optimization and high-throughput screening, we report a chemically defined, small-molecule-based defined system that contains only four components (4C), enabling highly efficient and cost-effective DE specification of hPSCs in the absence of recombinant proteins. 4C-induced DE can differentiate into functional hepatocytes, lung epithelium, and pancreatic β cells in vitro and multiple DE derivatives in vivo. Genomic accessibility analysis reveals that 4C reconfigures chromatin architecture to allow key DE transcription factor binding while identifying TEAD3 as a novel key regulator of the process. This system may facilitate mass production of DE derivatives for drug discovery, disease modeling, and cell therapy.
{"title":"Chemically defined and growth factor-free system for highly efficient endoderm induction of human pluripotent stem cells.","authors":"Zhiju Zhao, Fanzhu Zeng, Yage Nie, Gang Lu, He Xu, He En, Shanshan Gu, Wai-Yee Chan, Nan Cao, Jia Wang","doi":"10.1016/j.stemcr.2024.11.012","DOIUrl":"10.1016/j.stemcr.2024.11.012","url":null,"abstract":"<p><p>Definitive endoderm (DE) derived from human pluripotent stem cells (hPSCs) holds great promise for cell-based therapies and drug discovery. However, current DE differentiation methods required undefined components and/or expensive recombinant proteins, limiting their scalable manufacture and clinical use. Homogeneous DE differentiation in defined and recombinant protein-free conditions remains a major challenge. Here, by systematic optimization and high-throughput screening, we report a chemically defined, small-molecule-based defined system that contains only four components (4C), enabling highly efficient and cost-effective DE specification of hPSCs in the absence of recombinant proteins. 4C-induced DE can differentiate into functional hepatocytes, lung epithelium, and pancreatic β cells in vitro and multiple DE derivatives in vivo. Genomic accessibility analysis reveals that 4C reconfigures chromatin architecture to allow key DE transcription factor binding while identifying TEAD3 as a novel key regulator of the process. This system may facilitate mass production of DE derivatives for drug discovery, disease modeling, and cell therapy.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102382"},"PeriodicalIF":5.9,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11784501/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142898279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Versatile mesenchymal stem cells (MSCs) play an important role in tissue engineering and regenerative medicine. MSCs in 3D spheroid have shown higher secretion and differentiation functions than suspended counterparts, and, thus, in vitro cryopreservation of MSC spheroids is an indispensable technology to bridge the spatiotemporal gaps between spheroid generation and application. Traditional cryopreservation methods are inapplicable for spheroid due to severe thermal stress, toxic cryoprotectants, and ice formation. Here, we constructed and preserved human MSC (hMSC) spheroids via deep supercooling (DSC). Spheroids were DSC preserved at -12°C without ice formation for 7 days, with higher cell viability, energy level, and chondrogenic differentiation capacity than suspended hMSCs. hMSCs embedded in spheroids have close cell-cell interactions via N-cadherin to activate the AKT-cytochrome c-caspase anti-apoptotic cascade during DSC preservation. Finally, preserved hMSC spheroids were capable of chondrogenic differentiation and can be co-delivered with collagen to treat rat cartilage defects in vivo.
{"title":"Deep-supercooling preservation of stem cell spheroids for chondral defect repairment.","authors":"Jinbin Qiu, Bangrui Yu, Cheng Ren, Tian Wang, Guangjian Zhang, Zhe Jian, Jian Ding, Feng Xu, Haishui Huang","doi":"10.1016/j.stemcr.2024.10.008","DOIUrl":"10.1016/j.stemcr.2024.10.008","url":null,"abstract":"<p><p>Versatile mesenchymal stem cells (MSCs) play an important role in tissue engineering and regenerative medicine. MSCs in 3D spheroid have shown higher secretion and differentiation functions than suspended counterparts, and, thus, in vitro cryopreservation of MSC spheroids is an indispensable technology to bridge the spatiotemporal gaps between spheroid generation and application. Traditional cryopreservation methods are inapplicable for spheroid due to severe thermal stress, toxic cryoprotectants, and ice formation. Here, we constructed and preserved human MSC (hMSC) spheroids via deep supercooling (DSC). Spheroids were DSC preserved at -12°C without ice formation for 7 days, with higher cell viability, energy level, and chondrogenic differentiation capacity than suspended hMSCs. hMSCs embedded in spheroids have close cell-cell interactions via N-cadherin to activate the AKT-cytochrome c-caspase anti-apoptotic cascade during DSC preservation. Finally, preserved hMSC spheroids were capable of chondrogenic differentiation and can be co-delivered with collagen to treat rat cartilage defects in vivo.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1665-1676"},"PeriodicalIF":5.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751798/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692461","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-11-07DOI: 10.1016/j.stemcr.2024.09.004
Daniela Flores-Gomez, Willemijn Hobo, Diede van Ens, Elise L Kessler, Boris Novakovic, Nicolaas P M Schaap, Wim H C Rijnen, Leo A B Joosten, Mihai G Netea, Niels P Riksen, Siroon Bekkering
Innate immune cells can develop a long-lasting hyperresponsive phenotype, termed trained immunity, mediated by epigenetic and metabolic reprogramming. In mice, exposure to Bacille Calmette-Guérin (BCG), β-glucan, or Western diet induces trained immunity by reprogramming hematopoietic progenitor cells (HPCs), through interleukin-1β (IL-1β) signaling in the bone marrow (BM). We investigated whether IL-1β induces trained immunity in primary human BM-derived HPCs in vitro. We exposed human BM-derived HPCs to IL-1β for 4 h. HPCs were expanded and differentiated into monocytes followed by functional and transcriptomic characterization. IL-1β-exposed HPCs showed higher granulocyte-macrophage colony-forming units. The monocyte offspring produced more tumor necrosis factor (TNF) and IL-1β after restimulation with lipopolysaccharide (LPS) and Pam3Cys and is metabolically more active. Transcriptomic analysis showed upregulation of key atherogenic and inflammatory pathways. In conclusion, brief exposure of human BM-derived HPCs to IL-1β in vitro induces a trained immunity phenotype.
{"title":"Interleukin-1β induces trained innate immunity in human hematopoietic progenitor cells in vitro.","authors":"Daniela Flores-Gomez, Willemijn Hobo, Diede van Ens, Elise L Kessler, Boris Novakovic, Nicolaas P M Schaap, Wim H C Rijnen, Leo A B Joosten, Mihai G Netea, Niels P Riksen, Siroon Bekkering","doi":"10.1016/j.stemcr.2024.09.004","DOIUrl":"10.1016/j.stemcr.2024.09.004","url":null,"abstract":"<p><p>Innate immune cells can develop a long-lasting hyperresponsive phenotype, termed trained immunity, mediated by epigenetic and metabolic reprogramming. In mice, exposure to Bacille Calmette-Guérin (BCG), β-glucan, or Western diet induces trained immunity by reprogramming hematopoietic progenitor cells (HPCs), through interleukin-1β (IL-1β) signaling in the bone marrow (BM). We investigated whether IL-1β induces trained immunity in primary human BM-derived HPCs in vitro. We exposed human BM-derived HPCs to IL-1β for 4 h. HPCs were expanded and differentiated into monocytes followed by functional and transcriptomic characterization. IL-1β-exposed HPCs showed higher granulocyte-macrophage colony-forming units. The monocyte offspring produced more tumor necrosis factor (TNF) and IL-1β after restimulation with lipopolysaccharide (LPS) and Pam3Cys and is metabolically more active. Transcriptomic analysis showed upregulation of key atherogenic and inflammatory pathways. In conclusion, brief exposure of human BM-derived HPCs to IL-1β in vitro induces a trained immunity phenotype.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1651-1664"},"PeriodicalIF":5.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-11-07DOI: 10.1016/j.stemcr.2024.10.004
Hendrik J Undeutsch, Alberto Posabella, Andrea B Alber, Pushpinder S Bawa, Carlos Villacorta-Martin, Feiya Wang, Laertis Ikonomou, Darrell N Kotton, Anthony N Hollenberg
The production of mature functioning thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) is critical for potential novel therapeutic approaches to post-surgical and congenital hypothyroidism. To accomplish this, we developed a novel human iPSC line that expresses fluorophores targeted to the NKX2-1 and PAX8 loci, allowing for the identification and purification of cells destined to become TFCs. Optimizing a sequence of defined, serum-free media to promote stepwise developmental directed differentiation, we found that bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) stimulated lineage specification into TFCs from multiple iPSC lines. Single-cell RNA sequencing demonstrated that BMP4 withdrawal after lineage specification promoted TFC maturation, with mature TFCs representing the majority of cells present within 1 month. After xenotransplantation into athyreotic immunodeficient mice, engrafted cells exhibited thyroid follicular organization with thyroglobulin protein detected in the lumens of NKX2-1-positive follicles. While our iPSC-derived TFCs presented durable expression of thyroid-specific proteins, they were unable to rescue hypothyroidism in vivo.
{"title":"Derivation of transplantable human thyroid follicular epithelial cells from induced pluripotent stem cells.","authors":"Hendrik J Undeutsch, Alberto Posabella, Andrea B Alber, Pushpinder S Bawa, Carlos Villacorta-Martin, Feiya Wang, Laertis Ikonomou, Darrell N Kotton, Anthony N Hollenberg","doi":"10.1016/j.stemcr.2024.10.004","DOIUrl":"10.1016/j.stemcr.2024.10.004","url":null,"abstract":"<p><p>The production of mature functioning thyroid follicular cells (TFCs) from human induced pluripotent stem cells (iPSCs) is critical for potential novel therapeutic approaches to post-surgical and congenital hypothyroidism. To accomplish this, we developed a novel human iPSC line that expresses fluorophores targeted to the NKX2-1 and PAX8 loci, allowing for the identification and purification of cells destined to become TFCs. Optimizing a sequence of defined, serum-free media to promote stepwise developmental directed differentiation, we found that bone morphogenic protein 4 (BMP4) and fibroblast growth factor 2 (FGF2) stimulated lineage specification into TFCs from multiple iPSC lines. Single-cell RNA sequencing demonstrated that BMP4 withdrawal after lineage specification promoted TFC maturation, with mature TFCs representing the majority of cells present within 1 month. After xenotransplantation into athyreotic immunodeficient mice, engrafted cells exhibited thyroid follicular organization with thyroglobulin protein detected in the lumens of NKX2-1-positive follicles. While our iPSC-derived TFCs presented durable expression of thyroid-specific proteins, they were unable to rescue hypothyroidism in vivo.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1690-1705"},"PeriodicalIF":5.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751801/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142606374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) during mouse embryogenesis. Understanding the signaling molecules required for HSC development is crucial for the in vitro derivation of HSCs. We previously induced HSCs from embryonic HECs, isolated at embryonic day 10.5 (E10.5), in serum-free culture conditions with stem cell factor, thrombopoietin, and an endothelial feeder layer. Here, we aimed to elucidate signal requirements for inducing HSCs from earlier-stage HECs. Single-cell RNA sequencing (RNA-seq) analysis detected bone morphogenetic protein (BMP) signaling activation in E9.5 HECs. Adding BMP4 to the culture conditions led to the induction of HSCs from E9.5 HECs. Furthermore, isolating BMP4 receptor-expressing HECs from E9.5 embryos enriched progenitors with HSC-forming ability. This study identified BMP4 as an essential factor promoting the differentiation of early HECs into HSCs, opening up new possibilities for the in vitro derivation of HSCs.
{"title":"Bone morphogenetic protein 4 induces hematopoietic stem cell development from murine hemogenic endothelial cells in culture.","authors":"Mariko Tsuruda, Saori Morino-Koga, Xueyu Zhao, Shingo Usuki, Kei-Ichiro Yasunaga, Tomomasa Yokomizo, Ryuichi Nishinakamura, Toshio Suda, Minetaro Ogawa","doi":"10.1016/j.stemcr.2024.10.005","DOIUrl":"10.1016/j.stemcr.2024.10.005","url":null,"abstract":"<p><p>Hematopoietic stem cells (HSCs) develop from hemogenic endothelial cells (HECs) during mouse embryogenesis. Understanding the signaling molecules required for HSC development is crucial for the in vitro derivation of HSCs. We previously induced HSCs from embryonic HECs, isolated at embryonic day 10.5 (E10.5), in serum-free culture conditions with stem cell factor, thrombopoietin, and an endothelial feeder layer. Here, we aimed to elucidate signal requirements for inducing HSCs from earlier-stage HECs. Single-cell RNA sequencing (RNA-seq) analysis detected bone morphogenetic protein (BMP) signaling activation in E9.5 HECs. Adding BMP4 to the culture conditions led to the induction of HSCs from E9.5 HECs. Furthermore, isolating BMP4 receptor-expressing HECs from E9.5 embryos enriched progenitors with HSC-forming ability. This study identified BMP4 as an essential factor promoting the differentiation of early HECs into HSCs, opening up new possibilities for the in vitro derivation of HSCs.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1677-1689"},"PeriodicalIF":5.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751802/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10Epub Date: 2024-11-14DOI: 10.1016/j.stemcr.2024.10.006
Tsunakuni Ikka, Taichi Hatta, Misao Fujita
The key amendment to the Act on the Safety of Regenerative Medicine in June 2024 is regarding on-site inspections and the criteria for disqualifying the Certified Special Committees for Regenerative Medicine and Certified Committees for Regenerative Medicine. Appropriate regulations are needed after the legal amendment to stop the widespread use of unproven interventions and move away from the concept of a "Therapeutic Haven."
{"title":"Amendments to ASRM: Can we move away from a \"Therapeutic Haven\"?","authors":"Tsunakuni Ikka, Taichi Hatta, Misao Fujita","doi":"10.1016/j.stemcr.2024.10.006","DOIUrl":"10.1016/j.stemcr.2024.10.006","url":null,"abstract":"<p><p>The key amendment to the Act on the Safety of Regenerative Medicine in June 2024 is regarding on-site inspections and the criteria for disqualifying the Certified Special Committees for Regenerative Medicine and Certified Committees for Regenerative Medicine. Appropriate regulations are needed after the legal amendment to stop the widespread use of unproven interventions and move away from the concept of a \"Therapeutic Haven.\"</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"1648-1650"},"PeriodicalIF":5.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751797/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639636","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}