首页 > 最新文献

Proceedings of the 9th Unconventional Resources Technology Conference最新文献

英文 中文
Hydrocarbon Drainage Index Optimizes Lateral Placement 油气泄放指数优化横向布置
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5490
R. Schrynemeeckers
{"title":"Hydrocarbon Drainage Index Optimizes Lateral Placement","authors":"R. Schrynemeeckers","doi":"10.15530/urtec-2021-5490","DOIUrl":"https://doi.org/10.15530/urtec-2021-5490","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125462233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application of Artificial Intelligence Tools for Fault Imaging in an Unconventional Reservoir: A Case Study from the Permian Basin 人工智能工具在非常规油藏断层成像中的应用——以二叠纪盆地为例
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5534
H. Garcia, L. Plant
{"title":"Application of Artificial Intelligence Tools for Fault Imaging in an Unconventional Reservoir: A Case Study from the Permian Basin","authors":"H. Garcia, L. Plant","doi":"10.15530/urtec-2021-5534","DOIUrl":"https://doi.org/10.15530/urtec-2021-5534","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126385839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paleoredox Conditions of Early Carboniferous Upper Bakken Shale, Williston Basin 威利斯顿盆地早石炭世上巴肯页岩古氧化还原条件
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5657
D. Nandy, Sanyog Kumar, S. Sonnenberg
{"title":"Paleoredox Conditions of Early Carboniferous Upper Bakken Shale, Williston Basin","authors":"D. Nandy, Sanyog Kumar, S. Sonnenberg","doi":"10.15530/urtec-2021-5657","DOIUrl":"https://doi.org/10.15530/urtec-2021-5657","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"82 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126445232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automated Reconstruction of Fracture Networks 裂缝网络的自动重建
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5600
Javier Guerrero, Bernard Chang, Dany Hachem, M. Prodanović, D. Espinoza
{"title":"Automated Reconstruction of Fracture Networks","authors":"Javier Guerrero, Bernard Chang, Dany Hachem, M. Prodanović, D. Espinoza","doi":"10.15530/urtec-2021-5600","DOIUrl":"https://doi.org/10.15530/urtec-2021-5600","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"11 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114105314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Machine Learning for Estimating the Stimulated Reservoir Volume (SRV) 机器学习在估计增产储层体积(SRV)中的应用
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5537
Ali Rezaei, F. Aminzadeh, Eric VonLunen
Hydraulic fracturing process is an integrated part of the wellbore completions in unconventional reservoirs. Typically, the process is designed before executing the job, aiming at optimizing the final fracture geometry and increasing stimulated reservoir volume (SVR). The physics-based models used for designing purposes are typically built on several simplified assumptions and do not match the SRV estimates from field observations. This work proposes a data-driven and machine learning-based approach for estimating SRV in unconventional reservoirs. A dataset from the Marcellus Shale Energy and Environment Laboratory (MSEEL) project is used in this study. The model’s input data include stimulation parameters of 58 stages of two wells (MPI-3H and MPI5H). The model output consists of the size of the corresponding microseismic (M.S.) cloud to each stage. Because of the limited number of stages (58) and to make the predictions close to near-real-time, each stage and its corresponding M.S. events are broken into steps, each having unique operational parameters (e.g., proppant and fluid volume and injection rate, among other parameters). This approach helped us to increase the number of required samples for data-based modeling to 829 samples. A standard procedure, including data cleaning, normalization, exploratory data analysis, and input data split (20/80), is then applied to the data. This is followed by various machine learning algorithms used to predict SRV. The respective performances of different methods are compared against each other. Microseismic (M.S.) monitoring is commonly used to monitor fracture topology evolution over time during the fracturing process. The recorded M.S. clouds that are observed during the hydraulic fracturing process can give a rough estimate of the stimulated reservoir volume (SRV). In this approach, a volume (or area in 2D) that encloses most of the M.S. events can be estimated at different time windows and used as the model output. All models were validated on the test set, and a good match was obtained. Our approach will be the first step toward real-time data-based modeling of “Dynamic SRV” or DSRV, which can be used to provide a better understanding of fracture propagation in unconventional reservoirs. It also can be used to optimize the well stimulation process before executing the job. Moreover, the developed model can be trained and used for other unconventional reservoirs.
水力压裂是非常规油藏井筒完井的重要组成部分。通常,该工艺在作业前就进行了设计,旨在优化最终的裂缝几何形状,增加增产油藏体积(SVR)。用于设计目的的基于物理的模型通常建立在几个简化的假设上,并且与现场观测的SRV估计不匹配。这项工作提出了一种基于数据驱动和机器学习的方法来估计非常规油藏的SRV。本研究使用了来自Marcellus页岩能源与环境实验室(MSEEL)项目的数据集。该模型的输入数据包括两口井(MPI-3H和MPI5H)的58级增产参数。模型输出包括每个阶段对应的微地震云的大小。由于压裂段数量有限(58个),为了使预测接近实时,每个压裂段及其相应的ms事件被分成几个步骤,每个步骤都有独特的操作参数(例如,支撑剂、流体体积和注入速度等参数)。这种方法帮助我们将基于数据的建模所需的样本数量增加到829个样本。然后对数据应用一个标准过程,包括数据清理、规范化、探索性数据分析和输入数据分割(20/80)。接下来是用于预测SRV的各种机器学习算法。对不同方法的性能进行了比较。微地震(ms)监测通常用于监测压裂过程中裂缝拓扑随时间的演变。在水力压裂过程中观察到的ms云记录可以粗略估计压裂后的储层体积(SRV)。在这种方法中,可以在不同的时间窗口估计包含大多数ms事件的体积(或2D中的面积),并将其用作模型输出。所有模型都在测试集上进行了验证,得到了很好的匹配。我们的方法将是迈向基于实时数据建模的“动态SRV”或DSRV的第一步,该方法可用于更好地了解非常规储层的裂缝扩展。它还可以用于在作业前优化增产过程。此外,所建立的模型可用于其他非常规油藏的训练和应用。
{"title":"Applications of Machine Learning for Estimating the Stimulated Reservoir Volume (SRV)","authors":"Ali Rezaei, F. Aminzadeh, Eric VonLunen","doi":"10.15530/urtec-2021-5537","DOIUrl":"https://doi.org/10.15530/urtec-2021-5537","url":null,"abstract":"Hydraulic fracturing process is an integrated part of the wellbore completions in unconventional reservoirs. Typically, the process is designed before executing the job, aiming at optimizing the final fracture geometry and increasing stimulated reservoir volume (SVR). The physics-based models used for designing purposes are typically built on several simplified assumptions and do not match the SRV estimates from field observations. This work proposes a data-driven and machine learning-based approach for estimating SRV in unconventional reservoirs. A dataset from the Marcellus Shale Energy and Environment Laboratory (MSEEL) project is used in this study. The model’s input data include stimulation parameters of 58 stages of two wells (MPI-3H and MPI5H). The model output consists of the size of the corresponding microseismic (M.S.) cloud to each stage. Because of the limited number of stages (58) and to make the predictions close to near-real-time, each stage and its corresponding M.S. events are broken into steps, each having unique operational parameters (e.g., proppant and fluid volume and injection rate, among other parameters). This approach helped us to increase the number of required samples for data-based modeling to 829 samples. A standard procedure, including data cleaning, normalization, exploratory data analysis, and input data split (20/80), is then applied to the data. This is followed by various machine learning algorithms used to predict SRV. The respective performances of different methods are compared against each other. Microseismic (M.S.) monitoring is commonly used to monitor fracture topology evolution over time during the fracturing process. The recorded M.S. clouds that are observed during the hydraulic fracturing process can give a rough estimate of the stimulated reservoir volume (SRV). In this approach, a volume (or area in 2D) that encloses most of the M.S. events can be estimated at different time windows and used as the model output. All models were validated on the test set, and a good match was obtained. Our approach will be the first step toward real-time data-based modeling of “Dynamic SRV” or DSRV, which can be used to provide a better understanding of fracture propagation in unconventional reservoirs. It also can be used to optimize the well stimulation process before executing the job. Moreover, the developed model can be trained and used for other unconventional reservoirs.","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114121404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Evaluation of “Tight Oil” Well Performance and Completion Practices in the Powder River Basin - “Time Slice” Analysis 粉河盆地致密油井动态评价及完井实践——“时间片”分析
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5394
Brett Murray, R. Ness, G. Koperna, S. Carpenter
{"title":"Evaluation of “Tight Oil” Well Performance and Completion Practices in the Powder River Basin - “Time Slice” Analysis","authors":"Brett Murray, R. Ness, G. Koperna, S. Carpenter","doi":"10.15530/urtec-2021-5394","DOIUrl":"https://doi.org/10.15530/urtec-2021-5394","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121836497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Porosity Measurement of Shale Core Plugs without Chemical Cleaning 未经化学清洗的页岩岩心塞的孔隙度测量
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5113
Jin-Hong Chen, Stacey M Althaus, M. Boudjatit
{"title":"Porosity Measurement of Shale Core Plugs without Chemical Cleaning","authors":"Jin-Hong Chen, Stacey M Althaus, M. Boudjatit","doi":"10.15530/urtec-2021-5113","DOIUrl":"https://doi.org/10.15530/urtec-2021-5113","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121531846","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fluid Characterization and Volumetric Assessment in the Montney…One Tricky Fluid System 一个棘手的流体系统——蒙特尼的流体表征和体积评估
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5594
A. J. White, Wesley Feick, Nina Prefontaine, F. B. Thomas, Juan Marin, Jared Ponto, Ronnel Apil, Carter Clarkson
{"title":"Fluid Characterization and Volumetric Assessment in the Montney…One Tricky Fluid System","authors":"A. J. White, Wesley Feick, Nina Prefontaine, F. B. Thomas, Juan Marin, Jared Ponto, Ronnel Apil, Carter Clarkson","doi":"10.15530/urtec-2021-5594","DOIUrl":"https://doi.org/10.15530/urtec-2021-5594","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"345 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122837011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding the Interaction between Parent and Child Using Analytical and Numerical Approaches in Permian Basin – An Operator Perspective 利用解析和数值方法了解二叠纪盆地中父级与子级之间的相互作用——一个作业者的视角
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5264
S. Esmaili, J. Deng, E. Wolfram, V. Muralidharan, I. Harmawan, J. Cassanelli
{"title":"Understanding the Interaction between Parent and Child Using Analytical and Numerical Approaches in Permian Basin – An Operator Perspective","authors":"S. Esmaili, J. Deng, E. Wolfram, V. Muralidharan, I. Harmawan, J. Cassanelli","doi":"10.15530/urtec-2021-5264","DOIUrl":"https://doi.org/10.15530/urtec-2021-5264","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"255 2","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131546133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A Proposed Methodology to Assess Production Performance for Shale Oil and Gas Wells 页岩油气井生产动态评价方法研究
Pub Date : 2021-07-26 DOI: 10.15530/urtec-2021-5071
E. Dougherty, T. Blasingame
{"title":"A Proposed Methodology to Assess Production Performance for Shale Oil and Gas Wells","authors":"E. Dougherty, T. Blasingame","doi":"10.15530/urtec-2021-5071","DOIUrl":"https://doi.org/10.15530/urtec-2021-5071","url":null,"abstract":"","PeriodicalId":219222,"journal":{"name":"Proceedings of the 9th Unconventional Resources Technology Conference","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121642904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the 9th Unconventional Resources Technology Conference
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1