Ran Feng, Su Wu, Ruofei Li, Kunling Huang, Ting Zeng, Zhifen Zhou, Xiaoqin Zhong, Zhou Songyang, Feng Liu
Stem cell exhaustion is a hallmark of aging. Klotho-deficient mice (kl/kl mice) is a murine model that mimics human aging with significant bone abnormalities. The aim of this study is using kl/kl mice to investigate the functional change of bone marrow-derived mesenchymal stem cells (BMSCs) and explore the underlying mechanism. We found that klotho deficiency leads to bone abnormalities. In addition, kl/kl BMSCs manifested hyperactive proliferation but functionally declined both in vivo and in vitro. Mammalian target of rapamycin complex 1 (mTORC1) activity was higher in freshly isolated kl/kl BMSCs, and autophagy in kl/kl BMSCs was significantly decreased, possibly through mTORC1 activation. Conditional medium containing soluble Klotho protein (sKL) rescued hyperproliferation of kl/kl BMSCs by inhibiting mTORC1 activity and restoring autophagy. Finally, intraperitoneal injection of mTORC1 inhibitor rapamycin restored BMSC quiescence, ameliorated bone phenotype, and increased life span of kl/kl mice in vivo. This research highlights a therapeutic strategy to maintain the homeostasis of adult stem cell pool for healthy bone aging.
{"title":"mTORC1-Induced Bone Marrow-Derived Mesenchymal Stem Cell Exhaustion Contributes to the Bone Abnormalities in <i>Klotho</i>-Deficient Mice of Premature Aging.","authors":"Ran Feng, Su Wu, Ruofei Li, Kunling Huang, Ting Zeng, Zhifen Zhou, Xiaoqin Zhong, Zhou Songyang, Feng Liu","doi":"10.1089/scd.2022.0243","DOIUrl":"https://doi.org/10.1089/scd.2022.0243","url":null,"abstract":"<p><p>Stem cell exhaustion is a hallmark of aging. <i>Klotho</i>-deficient mice (<i>kl/kl</i> mice) is a murine model that mimics human aging with significant bone abnormalities. The aim of this study is using <i>kl/kl</i> mice to investigate the functional change of bone marrow-derived mesenchymal stem cells (BMSCs) and explore the underlying mechanism. We found that <i>klotho</i> deficiency leads to bone abnormalities. In addition, <i>kl/kl</i> BMSCs manifested hyperactive proliferation but functionally declined both in vivo and in vitro. Mammalian target of rapamycin complex 1 (mTORC1) activity was higher in freshly isolated <i>kl/kl</i> BMSCs, and autophagy in <i>kl/kl</i> BMSCs was significantly decreased, possibly through mTORC1 activation. Conditional medium containing soluble Klotho protein (sKL) rescued hyperproliferation of <i>kl/kl</i> BMSCs by inhibiting mTORC1 activity and restoring autophagy. Finally, intraperitoneal injection of mTORC1 inhibitor rapamycin restored BMSC quiescence, ameliorated bone phenotype, and increased life span of <i>kl/kl</i> mice in vivo. This research highlights a therapeutic strategy to maintain the homeostasis of adult stem cell pool for healthy bone aging.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"331-345"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01DOI: 10.1089/scd.2010.0461.retract
{"title":"<i>Retraction of:</i> Detection, Characterization, and Spontaneous Differentiation In Vitro of Very Small Embryonic-Like Putative Stem Cells in Adult Mammalian Ovary (10.1089/scd.2010.0461).","authors":"","doi":"10.1089/scd.2010.0461.retract","DOIUrl":"https://doi.org/10.1089/scd.2010.0461.retract","url":null,"abstract":"","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"364"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278013/pdf/scd.2010.0461.retract.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9665192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Atherosclerosis (AS) is a chronic inflammatory disease associated with lipid deposition, which could be converted into acute clinical events by thrombosis or plaque rupture. Adipose-derived mesenchymal stem cell (ADSC)-encapsulated repair units could be an effective cure for the treatment of AS patients. In this study, we encapsulate human adipose-derived mesenchymal stem cells (hADSCs) in collagen microspheres to fabricate stem cell repair units. Besides, we show that encapsulation in collagen microspheres and cultured in vitro for 14 days maintain the viability and stemness of hADSCs. Moreover, we generate AS progression model and niche in vitro by combining hyperlipemia serum of AS patients with AS cell models. We further systematically demonstrate that hADSC-based microspheres could ameliorate AS progression by inhibiting oxidative stress injury, cell apoptosis, endothelial dysfunction, inflammation, and lipid accumulation. In addition, we perform transcriptomic analysis and functional studies to demonstrate how hADSCs (three dimensional cultured in microspheres) respond to AS niche compared with healthy microenvironment. These findings reveal a role for ADSC-based microspheres in the treatment of AS and provide new ideas for stem cell therapy in cardiovascular disease. The results may have implications for improving the efficiency of hADSC therapies by illuminating the mechanisms of hADSCs exposed in special pathological niche.
{"title":"Human Adipose-Derived Mesenchymal Stem Cell-Based Microspheres Ameliorate Atherosclerosis Progression In Vitro.","authors":"Shaojie Yang, Xiong Xiao, Ziwei Huang, Qingyun Chen, Chenxi Li, Chuan Niu, Yuchu Yang, Liping Yang, Li Feng","doi":"10.1089/scd.2022.0287","DOIUrl":"https://doi.org/10.1089/scd.2022.0287","url":null,"abstract":"<p><p>Atherosclerosis (AS) is a chronic inflammatory disease associated with lipid deposition, which could be converted into acute clinical events by thrombosis or plaque rupture. Adipose-derived mesenchymal stem cell (ADSC)-encapsulated repair units could be an effective cure for the treatment of AS patients. In this study, we encapsulate human adipose-derived mesenchymal stem cells (hADSCs) in collagen microspheres to fabricate stem cell repair units. Besides, we show that encapsulation in collagen microspheres and cultured in vitro for 14 days maintain the viability and stemness of hADSCs. Moreover, we generate AS progression model and niche in vitro by combining hyperlipemia serum of AS patients with AS cell models. We further systematically demonstrate that hADSC-based microspheres could ameliorate AS progression by inhibiting oxidative stress injury, cell apoptosis, endothelial dysfunction, inflammation, and lipid accumulation. In addition, we perform transcriptomic analysis and functional studies to demonstrate how hADSCs (three dimensional cultured in microspheres) respond to AS niche compared with healthy microenvironment. These findings reveal a role for ADSC-based microspheres in the treatment of AS and provide new ideas for stem cell therapy in cardiovascular disease. The results may have implications for improving the efficiency of hADSC therapies by illuminating the mechanisms of hADSCs exposed in special pathological niche.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"314-330"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9586844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Intracerebral hemorrhage (ICH) is a common subtype of stroke with a very high mortality rate, but there is still no effective cure. Increasing evidence suggests that heme accumulation and neuronal ferroptosis play an important role in secondary injury after ICH. Neural stem cells (NSCs), as seed cells of the central nervous system, have received much attention due to their abundant paracrine product components and low immunogenicity. In this study, we focused on the protective mechanism of neural stem cell secretome (NSC-S) against neuronal ferroptosis in an ICH mouse model using hemin-induced in vitro models and collagenase type IV-induced in vivo models. The results showed that NSC-S could ameliorate neurological deficits and reduce neuronal injury in ICH model mice. In addition, NSC-S reduced heme uptake and ferroptosis in hemin-treated N2a cells in vitro. NSC-S induced the activation of Nrf-2 signaling pathway. However, these effects of NSC-S were abolished by the Nrf-2 inhibitor ML385. Notably, HSPE1 in NSC-S may be associated with the protection of NSC-S against hemin-injured neurons via the Nrf-2 signaling pathway. In summary, NSC-S protects against secondary neuronal injury in ICH via the Nrf-2 signaling pathway. Also, this functionality may be implemented by HSPE1.
{"title":"Human Neural Stem Cell Secretome Inhibits Neuron Heme Uptake and Ferroptosis in Intracerebral Hemorrhage Through Nrf-2 Signaling Pathway.","authors":"Xiaorui Lv, Yating Ling, Dongdong Niu, Yu Zeng, Yun Qiu, Yu Si, Tao Guo, Yinying Ni, Jingwem Zhang, Ziyu Wang, Jiabo Hu","doi":"10.1089/scd.2023.0010","DOIUrl":"https://doi.org/10.1089/scd.2023.0010","url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is a common subtype of stroke with a very high mortality rate, but there is still no effective cure. Increasing evidence suggests that heme accumulation and neuronal ferroptosis play an important role in secondary injury after ICH. Neural stem cells (NSCs), as seed cells of the central nervous system, have received much attention due to their abundant paracrine product components and low immunogenicity. In this study, we focused on the protective mechanism of neural stem cell secretome (NSC-S) against neuronal ferroptosis in an ICH mouse model using hemin-induced in vitro models and collagenase type IV-induced in vivo models. The results showed that NSC-S could ameliorate neurological deficits and reduce neuronal injury in ICH model mice. In addition, NSC-S reduced heme uptake and ferroptosis in hemin-treated N2a cells in vitro. NSC-S induced the activation of Nrf-2 signaling pathway. However, these effects of NSC-S were abolished by the Nrf-2 inhibitor ML385. Notably, HSPE1 in NSC-S may be associated with the protection of NSC-S against hemin-injured neurons via the Nrf-2 signaling pathway. In summary, NSC-S protects against secondary neuronal injury in ICH via the Nrf-2 signaling pathway. Also, this functionality may be implemented by HSPE1.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"346-363"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9642528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander George Kuzma-Hunt, Vipra Shah, Sierra DiMarco, Thomas G Koch, Keith A Russell, Dean Harvey Betts
Induced pluripotent stem cells (iPSCs) are produced by resetting the epigenetic and transcriptional landscapes of somatic cells to express the endogenous pluripotency network and revert them back to an undifferentiated state. The reduced ethical concerns associated with iPSCs and their capacity for extensive self-renewal and differentiation make them an unparalleled resource for drug discovery, disease modeling, and novel therapies. Canines (c) share many human diseases and environmental exposures, making them a superior translational model for drug screening and investigating human pathologies compared to other mammals. However, well-defined protocols for legitimate ciPSC production are lacking. Problems during canine somatic cell reprogramming (SCR) yield putative ciPSCs with incomplete pluripotency, at very low efficiencies. Despite the value of ciPSCs, the molecular mechanisms underlying their unsuccessful production and how these may be addressed have not been fully elucidated. Factors, including cost, safety, and feasibility, may also limit the widespread clinical adoption of ciPSCs for treating canine disease. The purpose of this narrative review is to identify barriers to canine SCR on molecular and cellular levels, using comparative research to inform potential solutions to their use in both research and clinical contexts. Current research is opening new doors for the application of ciPSCs in regenerative medicine for the mutual benefit of veterinary and human medicine.
{"title":"Opening the \"Black Box\" Underlying Barriers to the Use of Canine Induced Pluripotent Stem Cells: A Narrative Review.","authors":"Alexander George Kuzma-Hunt, Vipra Shah, Sierra DiMarco, Thomas G Koch, Keith A Russell, Dean Harvey Betts","doi":"10.1089/scd.2022.0300","DOIUrl":"https://doi.org/10.1089/scd.2022.0300","url":null,"abstract":"<p><p>Induced pluripotent stem cells (iPSCs) are produced by resetting the epigenetic and transcriptional landscapes of somatic cells to express the endogenous pluripotency network and revert them back to an undifferentiated state. The reduced ethical concerns associated with iPSCs and their capacity for extensive self-renewal and differentiation make them an unparalleled resource for drug discovery, disease modeling, and novel therapies. Canines (c) share many human diseases and environmental exposures, making them a superior translational model for drug screening and investigating human pathologies compared to other mammals. However, well-defined protocols for legitimate ciPSC production are lacking. Problems during canine somatic cell reprogramming (SCR) yield putative ciPSCs with incomplete pluripotency, at very low efficiencies. Despite the value of ciPSCs, the molecular mechanisms underlying their unsuccessful production and how these may be addressed have not been fully elucidated. Factors, including cost, safety, and feasibility, may also limit the widespread clinical adoption of ciPSCs for treating canine disease. The purpose of this narrative review is to identify barriers to canine SCR on molecular and cellular levels, using comparative research to inform potential solutions to their use in both research and clinical contexts. Current research is opening new doors for the application of ciPSCs in regenerative medicine for the mutual benefit of veterinary and human medicine.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"271-291"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10278003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9664101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carlien Brondeel, Frederik Weekers, Lore van Hecke, Eva Depuydt, Glenn Pauwelyn, Geert Verhoeven, Nathalie de Bouvré, Peter De Roeck, Peter Vandekerckhove, Pieter Vanacker, Davina Böhm-Geerdink, Robert Daems, Luc Duchateau, Jimmy Saunders, Yves Samoy, Jan H Spaas
Osteoarthritis is a frequently occurring joint disorder in veterinary practice. Current treatments are focused on pain and inflammation; however, these are not able to reverse the pathological condition. Mesenchymal stem cells (MSCs) could provide an interesting alternative because of their immunomodulatory properties. The objective of this study was to evaluate the potential of a single intravenous (IV) injection of xenogeneic equine peripheral blood-derived MSCs (epbMSCs) as treatment for articular pain and lameness. Patients with chronic articular pain were injected intravenously with epbMSCs. They were evaluated at three time points (baseline and two follow-ups) by a veterinarian based on an orthopedic joint assessment and an owner canine brief pain inventory scoring. Thirty-five dogs were included in the safety and efficacy evaluation of the study. Results showed that the epbMSC therapy was well tolerated, with no treatment-related adverse events and no increase in articular heat or pain. A significant improvement in lameness, range of motion, joint effusion, pain severity, and interference scores was found 6 weeks post-treatment compared with baseline. This study demonstrates that future research on IV administration of epbMSCs is warranted to further explore its possible beneficial effects in dogs with chronic articular pain and lameness. Clinical Trial gov ID: EC_2018_002.
{"title":"Intravenous Injection of Equine Mesenchymal Stem Cells in Dogs with Articular Pain and Lameness: A Feasibility Study.","authors":"Carlien Brondeel, Frederik Weekers, Lore van Hecke, Eva Depuydt, Glenn Pauwelyn, Geert Verhoeven, Nathalie de Bouvré, Peter De Roeck, Peter Vandekerckhove, Pieter Vanacker, Davina Böhm-Geerdink, Robert Daems, Luc Duchateau, Jimmy Saunders, Yves Samoy, Jan H Spaas","doi":"10.1089/scd.2022.0296","DOIUrl":"https://doi.org/10.1089/scd.2022.0296","url":null,"abstract":"<p><p>Osteoarthritis is a frequently occurring joint disorder in veterinary practice. Current treatments are focused on pain and inflammation; however, these are not able to reverse the pathological condition. Mesenchymal stem cells (MSCs) could provide an interesting alternative because of their immunomodulatory properties. The objective of this study was to evaluate the potential of a single intravenous (IV) injection of xenogeneic equine peripheral blood-derived MSCs (epbMSCs) as treatment for articular pain and lameness. Patients with chronic articular pain were injected intravenously with epbMSCs. They were evaluated at three time points (baseline and two follow-ups) by a veterinarian based on an orthopedic joint assessment and an owner canine brief pain inventory scoring. Thirty-five dogs were included in the safety and efficacy evaluation of the study. Results showed that the epbMSC therapy was well tolerated, with no treatment-related adverse events and no increase in articular heat or pain. A significant improvement in lameness, range of motion, joint effusion, pain severity, and interference scores was found 6 weeks post-treatment compared with baseline. This study demonstrates that future research on IV administration of epbMSCs is warranted to further explore its possible beneficial effects in dogs with chronic articular pain and lameness. Clinical Trial gov ID: EC_2018_002.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"292-300"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9621056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-06-01Epub Date: 2023-05-16DOI: 10.1089/scd.2023.0003
Stephanie Merfeld-Clauss, Hongyan Lu, Keith L March, Dmitry O Traktuev
Vascularization of ischemic and fabricated tissues is essential for successful tissue repair and replacement therapies. Endothelial cells (ECs) and mesenchymal stem/stromal cells (MSCs) in close proximity spontaneously organize into vessels after coimplantation in semisolid matrices. Thus, local injection of EC mixed with MSC may facilitate tissue (re)vascularization. The organization of these cells into vessels is accompanied by induction of a key regulator of vasculogenesis, activin A, in MSC through juxtacrine pathway. Mechanisms regulating activin A expression are poorly understood; therefore, the contributions of notch signaling pathways were evaluated in EC-adipose mesenchymal stromal cells (ASC) cocultures. Disruption of notch signaling in EC + ASC cocultures with a γ-secretase inhibitor, DAPT, completely abrogated both activin A induction and production, depending on the stage of vasculogenesis. While DAPT stimulated EC proliferation concurrent with increased secretion of vasculogenic factors, it also prevented the crucial transition of ASC from progenitor to smooth muscle cell phenotype, collectively resulting in ineffective tubulogenesis. Silencing Notch2 in ASC abolished activin A production in cocultures, but resulted in normal ASC maturation. In contrast, silencing Notch3 in ASC led to autonomous upregulation of mural cell markers, and intercellular contact with EC further enhanced upregulation of these markers, concurrent with amplified activin A secretion. Strong induction of activin A expression was achieved by exposing ASC to immobilized notch ligand jagged1, whereas jagged1 IgG, added to EC + ASC incubation media, prevented activin A expression. Overall, this study revealed that EC control activin A expression in ASC through trans juxtacrine notch signaling pathways, and uninterrupted notch signaling is required for activin A production, although signaling through Notch2 and Notch3 produce opposing effects.
缺血组织和人造组织的血管化对成功的组织修复和替代疗法至关重要。内皮细胞(EC)和间充质干细胞/基质细胞(MSC)在半固态基质中共同植入后,靠近的细胞会自发地组织成血管。因此,局部注射混合间充质干细胞的EC可促进组织(再)血管化。在这些细胞组织成血管的过程中,间充质干细胞中的一种血管生成的关键调节因子--活化素 A 会通过共刺激途径被诱导。人们对调节活化素 A 表达的机制知之甚少;因此,我们在 EC-脂肪间充质基质细胞(ASC)共培养物中评估了缺口信号通路的贡献。用γ-分泌酶抑制剂DAPT破坏EC+ASC共培养物中的notch信号传导,可完全抑制活化素A的诱导和产生,具体取决于血管生成的阶段。DAPT刺激了EC的增殖,同时增加了血管生成因子的分泌,但它也阻止了ASC从祖细胞向平滑肌细胞表型的关键转变,共同导致了无效的肾小管生成。沉默ASC中的Notch2会抑制共培养物中活化素A的产生,但会导致ASC正常成熟。相反,沉默 ASC 中的 Notch3 会导致壁细胞标记的自主上调,与 EC 的细胞间接触会进一步加强这些标记的上调,同时激活素 A 的分泌也会增加。将 ASC 暴露于固定的缺口配体 jagged1 可强烈诱导活化素 A 的表达,而在 EC + ASC 培养基中加入 jagged1 IgG 则可阻止活化素 A 的表达。总之,这项研究揭示了EC通过反式并列notch信号通路控制ASC中激活素A的表达,激活素A的产生需要不间断的notch信号传导,尽管通过Notch2和Notch3传导信号会产生相反的效果。
{"title":"Notch Pathways Regulate Expression of Angiostatic Factor Activin A in Endothelial-Pericyte-Like Mesenchymal Stromal Cell Interactions.","authors":"Stephanie Merfeld-Clauss, Hongyan Lu, Keith L March, Dmitry O Traktuev","doi":"10.1089/scd.2023.0003","DOIUrl":"10.1089/scd.2023.0003","url":null,"abstract":"<p><p>Vascularization of ischemic and fabricated tissues is essential for successful tissue repair and replacement therapies. Endothelial cells (ECs) and mesenchymal stem/stromal cells (MSCs) in close proximity spontaneously organize into vessels after coimplantation in semisolid matrices. Thus, local injection of EC mixed with MSC may facilitate tissue (re)vascularization. The organization of these cells into vessels is accompanied by induction of a key regulator of vasculogenesis, activin A, in MSC through juxtacrine pathway. Mechanisms regulating activin A expression are poorly understood; therefore, the contributions of notch signaling pathways were evaluated in EC-adipose mesenchymal stromal cells (ASC) cocultures. Disruption of notch signaling in EC + ASC cocultures with a γ-secretase inhibitor, DAPT, completely abrogated both activin A induction and production, depending on the stage of vasculogenesis. While DAPT stimulated EC proliferation concurrent with increased secretion of vasculogenic factors, it also prevented the crucial transition of ASC from progenitor to smooth muscle cell phenotype, collectively resulting in ineffective tubulogenesis. Silencing Notch2 in ASC abolished activin A production in cocultures, but resulted in normal ASC maturation. In contrast, silencing Notch3 in ASC led to autonomous upregulation of mural cell markers, and intercellular contact with EC further enhanced upregulation of these markers, concurrent with amplified activin A secretion. Strong induction of activin A expression was achieved by exposing ASC to immobilized notch ligand jagged1, whereas jagged1 IgG, added to EC + ASC incubation media, prevented activin A expression. Overall, this study revealed that EC control activin A expression in ASC through <i>trans</i> juxtacrine notch signaling pathways, and uninterrupted notch signaling is required for activin A production, although signaling through Notch2 and Notch3 produce opposing effects.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 11-12","pages":"301-313"},"PeriodicalIF":4.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10277995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9666382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The effects of smoking on fetal development and stem cell differentiation are not fully understood. Although nicotinic acetylcholine receptors (nAChRs) are expressed in many organs of the human body, their significance in human induced pluripotent stem cells (hiPSCs) remains unclear. After expression levels of nAChR subunits in hiPSCs were determined, the effects of the nAChR agonist, nicotine, on undifferentiated hiPSCs were evaluated using a Clariom S Array. We also determined the effect of nicotine alone and with a nAChR subunit antagonist on hiPSCs. nAChR α4, α7, and β4 subunits were strongly expressed in hiPSCs. cDNA microarray, gene ontology, and enrichment analyses showed that exposing hiPSCs to nicotine altered expression of genes associated with immune responses, neurological system, carcinogenesis, cell differentiation, and cell proliferation. Particularly affected was metallothionein, which acts to decrease reactive oxygen species (ROS). The nicotine-induced reduction of ROS in hiPSCs was canceled by an α4 subunit or nonselective nAChR antagonist. HiPSC proliferation was increased by nicotine, and this effect, too, was canceled by an α4 antagonist. In conclusion, nicotine reduces ROS and enhances cell proliferation through the α4 nAChR subunit in hiPSCs. These findings provide new insight into the significance of nAChRs on human stem cells and fertilized human ova.
吸烟对胎儿发育和干细胞分化的影响尚不完全清楚。尽管尼古丁乙酰胆碱受体(nAChRs)在人体的许多器官中表达,但它们在人诱导多能干细胞(hiPSCs)中的意义尚不清楚。在确定hipsc中nAChR亚基的表达水平后,使用Clariom S Array评估nAChR激动剂尼古丁对未分化hipsc的影响。我们还确定了尼古丁单独和nAChR亚基拮抗剂对hipsc的影响。nAChR α4、α7和β4亚基在hiPSCs中强烈表达。cDNA微阵列、基因本体论和富集分析表明,hiPSCs暴露于尼古丁会改变与免疫反应、神经系统、癌变、细胞分化和细胞增殖相关的基因表达。特别受影响的是金属硫蛋白,其作用是减少活性氧(ROS)。尼古丁诱导的hipsc中ROS的减少被α4亚基或非选择性nAChR拮抗剂所抵消。尼古丁可增加HiPSC的增殖,但这种作用也被α4拮抗剂所抵消。综上所述,尼古丁通过α4 nAChR亚基在hiPSCs中减少ROS,促进细胞增殖。这些发现为nachr对人类干细胞和受精卵的意义提供了新的认识。
{"title":"Nicotine Reduces Reactive Oxygen Species and Enhances Cell Proliferation via the α4 Nicotinic Acetylcholine Receptor Subunit in Human Induced Pluripotent Stem Cells.","authors":"Youichi Ohno, Daisuke Taura, Kentaro Okamoto, Haruka Fujita, Kyoko Honda-Kohmo, Koji Matsuo, Masakatsu Sone","doi":"10.1089/scd.2022.0258","DOIUrl":"https://doi.org/10.1089/scd.2022.0258","url":null,"abstract":"<p><p>The effects of smoking on fetal development and stem cell differentiation are not fully understood. Although nicotinic acetylcholine receptors (nAChRs) are expressed in many organs of the human body, their significance in human induced pluripotent stem cells (hiPSCs) remains unclear. After expression levels of nAChR subunits in hiPSCs were determined, the effects of the nAChR agonist, nicotine, on undifferentiated hiPSCs were evaluated using a Clariom S Array. We also determined the effect of nicotine alone and with a nAChR subunit antagonist on hiPSCs. nAChR α4, α7, and β4 subunits were strongly expressed in hiPSCs. cDNA microarray, gene ontology, and enrichment analyses showed that exposing hiPSCs to nicotine altered expression of genes associated with immune responses, neurological system, carcinogenesis, cell differentiation, and cell proliferation. Particularly affected was metallothionein, which acts to decrease reactive oxygen species (ROS). The nicotine-induced reduction of ROS in hiPSCs was canceled by an α4 subunit or nonselective nAChR antagonist. HiPSC proliferation was increased by nicotine, and this effect, too, was canceled by an α4 antagonist. In conclusion, nicotine reduces ROS and enhances cell proliferation through the α4 nAChR subunit in hiPSCs. These findings provide new insight into the significance of nAChRs on human stem cells and fertilized human ova.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 9-10","pages":"237-245"},"PeriodicalIF":4.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9589572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mfge8, a secreted glycoprotein, is a key molecule that mediates the phagocytosis of apoptotic cells. Previous research reported that Mfge8 is critical for the proliferation and differentiation of radial glial cells (RGCs) in the dentate gyrus of adult mice. The treatment of Mfge8 is also beneficial for the repair of central nervous system (CNS) injury after cerebral ischemia. This study aimed to investigate whether the expression of mfge8a in zebrafish embryos was associated with the development of CNS and larval behavior. We found that zebrafish mfge8a was initially expressed at 48 hpf, and its expression was gradually increased in the ventricular zone. Knocking down mfge8a with antisense morpholino oligonucleotides impaired both spontaneous and photoinduced swimming locomotion in the behavioral tests. The neurogenesis analysis in telencephalon showed that mfge8a morphants excessively promoted neural differentiation over self-renewal after RGCs division, and consequently depleted proliferative RGC population during early neurogenesis. Furthermore, downregulation of mfge8a was shown to alter the expression patterns of genes associated with Notch signaling pathway. Our results demonstrated that mfge8a is involved in the maintenance of the progenitor identity of RGCs in embryonic zebrafish brain through regulating Notch signaling pathway, thereby contributing to consistent neurogenesis and locomotor development.
{"title":"Milk Fat Globule Epidermal Growth Factor 8a Regulates Neurogenesis in Telencephalon and Affects Larval Behavior in Zebrafish.","authors":"Yongfeng Luo, Dalu Lu, Jiefei Zhou, Jiang Wu, Weiye Wang, Linxi Qian","doi":"10.1089/scd.2022.0247","DOIUrl":"https://doi.org/10.1089/scd.2022.0247","url":null,"abstract":"<p><p>Mfge8, a secreted glycoprotein, is a key molecule that mediates the phagocytosis of apoptotic cells. Previous research reported that Mfge8 is critical for the proliferation and differentiation of radial glial cells (RGCs) in the dentate gyrus of adult mice. The treatment of Mfge8 is also beneficial for the repair of central nervous system (CNS) injury after cerebral ischemia. This study aimed to investigate whether the expression of <i>mfge8a</i> in zebrafish embryos was associated with the development of CNS and larval behavior. We found that zebrafish <i>mfge8a</i> was initially expressed at 48 hpf, and its expression was gradually increased in the ventricular zone. Knocking down <i>mfge8a</i> with antisense morpholino oligonucleotides impaired both spontaneous and photoinduced swimming locomotion in the behavioral tests. The neurogenesis analysis in telencephalon showed that <i>mfge8a</i> morphants excessively promoted neural differentiation over self-renewal after RGCs division, and consequently depleted proliferative RGC population during early neurogenesis. Furthermore, downregulation of <i>mfge8a</i> was shown to alter the expression patterns of genes associated with Notch signaling pathway. Our results demonstrated that <i>mfge8a</i> is involved in the maintenance of the progenitor identity of RGCs in embryonic zebrafish brain through regulating Notch signaling pathway, thereby contributing to consistent neurogenesis and locomotor development.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 9-10","pages":"246-257"},"PeriodicalIF":4.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9944202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-01Epub Date: 2023-03-22DOI: 10.1089/scd.2022.0255
Sampada Kallol, Laura Martin-Sancho, Robert Morey, Omonigho Aisagbonhi, Donald Pizzo, Morgan Meads, Sumit K Chanda, Francesca Soncin
SARS-CoV-2 infection during pregnancy has been associated with poor maternal and neonatal outcomes and placental defects. The placenta, which acts as a physical and immunological barrier at the maternal-fetal interface, is not established until the end of the first trimester. Therefore, localized viral infection of the trophoblast compartment early in gestation could trigger an inflammatory response resulting in altered placental function and consequent suboptimal conditions for fetal growth and development. In this study, we investigated the effect of SARS-CoV-2 infection in early gestation placentae using placenta-derived human trophoblast stem cells (TSCs), a novel in vitro model, and their extravillous trophoblast (EVT) and syncytiotrophoblast (STB) derivatives. SARS-CoV-2 was able to productively replicate in TSC-derived STB and EVT, but not undifferentiated TSCs, which is consistent with the expression of SARS-CoV-2 entry host factors, ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane cellular serine protease) in these cells. In addition, both TSC-derived EVT and STB infected with SARS-CoV-2 elicited an interferon-mediated innate immune response. Combined, these results suggest that placenta-derived TSCs are a robust in vitro model to investigate the effect of SARS-CoV-2 infection in the trophoblast compartment of the early placenta and that SARS-CoV-2 infection in early gestation activates the innate immune response and inflammation pathways. Therefore, placental development could be adversely affected by early SARS-CoV-2 infection by directly infecting the developing differentiated trophoblast compartment, posing a higher risk for poor pregnancy outcomes.
{"title":"Activation of the Interferon Pathway in Trophoblast Cells Productively Infected with SARS-CoV-2.","authors":"Sampada Kallol, Laura Martin-Sancho, Robert Morey, Omonigho Aisagbonhi, Donald Pizzo, Morgan Meads, Sumit K Chanda, Francesca Soncin","doi":"10.1089/scd.2022.0255","DOIUrl":"10.1089/scd.2022.0255","url":null,"abstract":"<p><p>SARS-CoV-2 infection during pregnancy has been associated with poor maternal and neonatal outcomes and placental defects. The placenta, which acts as a physical and immunological barrier at the maternal-fetal interface, is not established until the end of the first trimester. Therefore, localized viral infection of the trophoblast compartment early in gestation could trigger an inflammatory response resulting in altered placental function and consequent suboptimal conditions for fetal growth and development. In this study, we investigated the effect of SARS-CoV-2 infection in early gestation placentae using placenta-derived human trophoblast stem cells (TSCs), a novel in vitro model, and their extravillous trophoblast (EVT) and syncytiotrophoblast (STB) derivatives. SARS-CoV-2 was able to productively replicate in TSC-derived STB and EVT, but not undifferentiated TSCs, which is consistent with the expression of SARS-CoV-2 entry host factors, ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane cellular serine protease) in these cells. In addition, both TSC-derived EVT and STB infected with SARS-CoV-2 elicited an interferon-mediated innate immune response. Combined, these results suggest that placenta-derived TSCs are a robust in vitro model to investigate the effect of SARS-CoV-2 infection in the trophoblast compartment of the early placenta and that SARS-CoV-2 infection in early gestation activates the innate immune response and inflammation pathways. Therefore, placental development could be adversely affected by early SARS-CoV-2 infection by directly infecting the developing differentiated trophoblast compartment, posing a higher risk for poor pregnancy outcomes.</p>","PeriodicalId":21934,"journal":{"name":"Stem cells and development","volume":"32 9-10","pages":"225-236"},"PeriodicalIF":4.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10171947/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9960391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}