Pub Date : 2020-10-10eCollection Date: 2020-01-01DOI: 10.21037/sci-2020-021
Maria Naranjo Palacio, Luis Gonzalez-Mosquera, David Rosenthal, Salini Kunar, Qi Tao, Wondwossen Gebre, Huijuan Liao
Epidermal inclusion cysts (EIC) are common benign lesions of the skin, ovaries, and testicles. However, their occurrence in thyroid gland is rare. We reported a case in which a 57-year-old male patient with history of nontoxic uninodular goiter presented with dysphonia and dysphagia. The cytology of ultrasound guided fine needle aspiration of the thyroid nodule revealed epidermal cyst. Despite the benign presentation. The patient underwent lobectomy to relieve his clinical symptoms and the surgical pathology exam confirmed the diagnosis of benign thyroid cyst, consistent with EIC of the thyroid.
{"title":"Epidermal inclusion cyst in the thyroid gland.","authors":"Maria Naranjo Palacio, Luis Gonzalez-Mosquera, David Rosenthal, Salini Kunar, Qi Tao, Wondwossen Gebre, Huijuan Liao","doi":"10.21037/sci-2020-021","DOIUrl":"https://doi.org/10.21037/sci-2020-021","url":null,"abstract":"<p><p>Epidermal inclusion cysts (EIC) are common benign lesions of the skin, ovaries, and testicles. However, their occurrence in thyroid gland is rare. We reported a case in which a 57-year-old male patient with history of nontoxic uninodular goiter presented with dysphonia and dysphagia. The cytology of ultrasound guided fine needle aspiration of the thyroid nodule revealed epidermal cyst. Despite the benign presentation. The patient underwent lobectomy to relieve his clinical symptoms and the surgical pathology exam confirmed the diagnosis of benign thyroid cyst, consistent with EIC of the thyroid.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"18"},"PeriodicalIF":0.0,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7658739/pdf/sci-07-2020-021.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38619272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-08eCollection Date: 2020-01-01DOI: 10.21037/sci-2020-024
Rehile Zengin, Oyku Beyaz, Elif S Koc, Ibrahim O Akinci, Sesin Kocagoz, Gulseren Sagcan, Ercument Ovali, Caglar Cuhadaroglu
An outbreak of a new coronavirus causing severe respiratory disease (COVID-19) was first reported in China and rapidly spread worldwide. Clinical spectrum changes from asymptomatic infection to severe illness and even death, and no specific treatment is currently available. A range of antiviral, antimalarial and antibiotic agents are being used. We report a case of a COVID-19 patient that progressed to severe disease requiring intubation and intensive care. We performed mesenchymal stem cell (MSC) transplantation considering the signs showing persistent excessive immune response and deterioration despite all supportive and drug therapies. The two rounds of transplantation did not result in any severe complications and was well-tolerated. Clinical signs were improved. The use of MSC therapy may be considered for compassionate use in selected patients.
{"title":"Mesenchymal stem cell treatment in a critically ill COVID-19 patient: a case report.","authors":"Rehile Zengin, Oyku Beyaz, Elif S Koc, Ibrahim O Akinci, Sesin Kocagoz, Gulseren Sagcan, Ercument Ovali, Caglar Cuhadaroglu","doi":"10.21037/sci-2020-024","DOIUrl":"https://doi.org/10.21037/sci-2020-024","url":null,"abstract":"<p><p>An outbreak of a new coronavirus causing severe respiratory disease (COVID-19) was first reported in China and rapidly spread worldwide. Clinical spectrum changes from asymptomatic infection to severe illness and even death, and no specific treatment is currently available. A range of antiviral, antimalarial and antibiotic agents are being used. We report a case of a COVID-19 patient that progressed to severe disease requiring intubation and intensive care. We performed mesenchymal stem cell (MSC) transplantation considering the signs showing persistent excessive immune response and deterioration despite all supportive and drug therapies. The two rounds of transplantation did not result in any severe complications and was well-tolerated. Clinical signs were improved. The use of MSC therapy may be considered for compassionate use in selected patients.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"17"},"PeriodicalIF":0.0,"publicationDate":"2020-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38537293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Ascorbic acid-2-phosphate has been reported to play a role in cell division and to suppress aging of cell. However, post-thawed cell morphology on various concentration of ascorbic acid is still unclear. In this study, we aimed to observe the morphology of post-thawed adipose-derived stem cells (ADSCs) in medium containing L-ascorbic acid-2-phosphate (LAA2P) (50 and 100 µg/mL).
Methods: The cells were isolated from adipose tissue. Isolated cells then cultured and cryopreserved in liquid nitrogen. We detected mRNA expression of type 1 collagen on day 5. Cell seeded in T25 flask using basal medium [Dulbecco's modified Eagle's medium (DMEM) only] as a control group, DMEM with 10% fetal bovine serum (FBS) and antibiotics as DMFA group, while DMFA with ascorbic acid (50 and 100 µg/mL) as ascorbic acid treatment group.
Results: The results showed that the cells cultured in DMEM only attached until 96 hours of observation while serum groups with or without ascorbic acid supplementation showed the proliferation until 240 hours of observation. The highest spread size of cell was in a serum group without ascorbic acid supplementation and the highest yield of cells showed in a group with 50 µg/mL of ascorbic acid supplementation. Reduced mRNA expression of type 1 collagen which related to aging was showed in cells cultured without ascorbic acid supplementation.
Conclusions: These results showed that ascorbic acid increased the cell division and suppressed the aging processes indicated by normal spread cell in size compared to cell cultured in DMFA without ascorbic acid supplementation.
背景:抗坏血酸-2-磷酸已被报道在细胞分裂和抑制细胞衰老中起作用。然而,不同浓度抗坏血酸对解冻后细胞形态的影响尚不清楚。在这项研究中,我们旨在观察解冻后的脂肪来源干细胞(ADSCs)在含有l -抗坏血酸-2-磷酸(LAA2P)(50和100µg/mL)的培养基中的形态。方法:从脂肪组织中分离细胞。然后将分离的细胞培养并在液氮中冷冻保存。第5天检测1型胶原mRNA表达。细胞在T25烧瓶中接种,以基础培养基[Dulbecco's modified Eagle's medium (DMEM)]为对照组,DMEM中添加10%胎牛血清(FBS)和抗生素作为DMFA组,DMFA中添加抗坏血酸(50和100µg/mL)作为抗坏血酸处理组。结果:DMEM中培养的细胞仅粘附到96 h,而添加和不添加抗坏血酸的血清组细胞增殖到240 h。未添加抗坏血酸的血清组细胞扩散大小最大,添加50µg/mL抗坏血酸的血清组细胞产量最高。在不添加抗坏血酸的情况下,细胞中与衰老相关的1型胶原mRNA表达减少。结论:这些结果表明,与不添加抗坏血酸的DMFA培养的细胞相比,抗坏血酸增加了细胞分裂,抑制了正常细胞大小的衰老过程。
{"title":"Effect of ascorbic acid on morphology of post-thawed human adipose-derived stem cells.","authors":"Komang Ardi Wahyuningsih, Karina Karina, Imam Rosadi, Iis Rosliana, Wismo Reja Subroto","doi":"10.21037/sci-2020-011","DOIUrl":"https://doi.org/10.21037/sci-2020-011","url":null,"abstract":"<p><strong>Background: </strong>Ascorbic acid-2-phosphate has been reported to play a role in cell division and to suppress aging of cell. However, post-thawed cell morphology on various concentration of ascorbic acid is still unclear. In this study, we aimed to observe the morphology of post-thawed adipose-derived stem cells (ADSCs) in medium containing L-ascorbic acid-2-phosphate (LAA2P) (50 and 100 µg/mL).</p><p><strong>Methods: </strong>The cells were isolated from adipose tissue. Isolated cells then cultured and cryopreserved in liquid nitrogen. We detected mRNA expression of type 1 collagen on day 5. Cell seeded in T25 flask using basal medium [Dulbecco's modified Eagle's medium (DMEM) only] as a control group, DMEM with 10% fetal bovine serum (FBS) and antibiotics as DMFA group, while DMFA with ascorbic acid (50 and 100 µg/mL) as ascorbic acid treatment group.</p><p><strong>Results: </strong>The results showed that the cells cultured in DMEM only attached until 96 hours of observation while serum groups with or without ascorbic acid supplementation showed the proliferation until 240 hours of observation. The highest spread size of cell was in a serum group without ascorbic acid supplementation and the highest yield of cells showed in a group with 50 µg/mL of ascorbic acid supplementation. Reduced mRNA expression of type 1 collagen which related to aging was showed in cells cultured without ascorbic acid supplementation.</p><p><strong>Conclusions: </strong>These results showed that ascorbic acid increased the cell division and suppressed the aging processes indicated by normal spread cell in size compared to cell cultured in DMFA without ascorbic acid supplementation.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"16"},"PeriodicalIF":0.0,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38638055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-10eCollection Date: 2020-01-01DOI: 10.21037/sci-2020-013
Angelo V Vasiliadis, Nikiforos Galanis
Regenerative medicine is a promising field in orthopaedic surgery. Although surgical treatments can produce excellent outcomes and may be the best choice for some patients, regenerative medicine can provide with more minimally-invasive treatment options. Mesenchymal stem cells (MSCs) are multipotent cells and are highly capable to differentiate into osteocytes or chondrocytes, while they can be isolated from different bone sources. The bone marrow aspiration from the posterior iliac crest appears to be preferred, as it provided a modestly higher concentration of nucleated cells [(25.1-54.7)×106 cells/mL]. MSCs are also easily obtained from other bone sources, such as humerus, femur, tibia, vertebral body or calcaneus and have their content ranges between 5.8×106 and 38.7×106 nucleated cells. Although, they present a wide range of documented nucleated cells, they can be cultivated and expanded in vitro in multiple cell types, avoiding a second surgical site while preventing post-operative pain and the possible risk for infection. Thus, they represent a promising and encouraging treatment option in orthopaedic surgery.
{"title":"Human bone marrow-derived mesenchymal stem cells from different bone sources: a panorama.","authors":"Angelo V Vasiliadis, Nikiforos Galanis","doi":"10.21037/sci-2020-013","DOIUrl":"https://doi.org/10.21037/sci-2020-013","url":null,"abstract":"<p><p>Regenerative medicine is a promising field in orthopaedic surgery. Although surgical treatments can produce excellent outcomes and may be the best choice for some patients, regenerative medicine can provide with more minimally-invasive treatment options. Mesenchymal stem cells (MSCs) are multipotent cells and are highly capable to differentiate into osteocytes or chondrocytes, while they can be isolated from different bone sources. The bone marrow aspiration from the posterior iliac crest appears to be preferred, as it provided a modestly higher concentration of nucleated cells [(25.1-54.7)×10<sup>6</sup> cells/mL]. MSCs are also easily obtained from other bone sources, such as humerus, femur, tibia, vertebral body or calcaneus and have their content ranges between 5.8×10<sup>6</sup> and 38.7×10<sup>6</sup> nucleated cells. Although, they present a wide range of documented nucleated cells, they can be cultivated and expanded in vitro in multiple cell types, avoiding a second surgical site while preventing post-operative pain and the possible risk for infection. Thus, they represent a promising and encouraging treatment option in orthopaedic surgery.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"15"},"PeriodicalIF":0.0,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38409920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-07eCollection Date: 2020-01-01DOI: 10.21037/sci-2020-015
Eman Hany, Sarah Yahia, Mahmoud Fathy Elsherbeny, Nagla Mahmoud Salama, Islam Mohammed Ateia, Noha Tharwat Abou El-Khier, Ibrahim El-Sherbiny, Mazen Tharwat Abou Elkhier
Background: Bone tissue engineering is a widely growing field that requires the combination of cells, scaffolds and signaling molecules. Adipose derived stem cells (ADSCs) are an accessible and abundant source of mesenchymal stem cells with high plasticity. Polycaprolactone/alginate (PCL/Alg) composite scaffolds have been used in bone regeneration and nano-hydroxyapatite (n-HA) is used as a reinforcing, osteoconductive component in scaffold fabrication. This study was conducted to assess the ability of three different PCL/Alg based scaffolds to induce osteogenic differentiation of ADSCs and to compare between them.
Methods: The study comprised 5 groups; negative control group with ADSCs cultured in complete culture media, positive control group with ADSCs cultured in osteogenic differentiation media, and 3 experimental groups with ADSCs seeded onto 3 scaffolds: S1 (PCL/Alg), S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) respectively and cultured in osteogenic media. Mineralization and gene expression were assessed by Alizarin red S (ARS) staining and real time quantitative polymerase chain reaction (RT-qPCR). Evaluation was done at 7, 14 and 21 days.
Results: ARS staining reflected a time dependent increase through days 7, 14 and 21, with S3 (PCL/Alg/Ca/n-HA) group showing the highest mineralization levels. RT-qPCR detected upregulation of ALP gene expression at day 7 and decline thereafter. S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) groups showed significantly higher gene expression levels than S1 (PCL/Alg).
Conclusions: ADSCs and PCL/Alg-based scaffolds compose a good tissue engineering complex for bone regeneration. Addition of n-HA to PCL/Alg scaffolds and crosslinking with CaCl2 efficiently improve the osteogenic potential of ADSCs.
{"title":"Evaluation of the osteogenic potential of rat adipose-derived stem cells with different polycaprolactone/alginate-based nanofibrous scaffolds: an <i>in vitro</i> study.","authors":"Eman Hany, Sarah Yahia, Mahmoud Fathy Elsherbeny, Nagla Mahmoud Salama, Islam Mohammed Ateia, Noha Tharwat Abou El-Khier, Ibrahim El-Sherbiny, Mazen Tharwat Abou Elkhier","doi":"10.21037/sci-2020-015","DOIUrl":"https://doi.org/10.21037/sci-2020-015","url":null,"abstract":"<p><strong>Background: </strong>Bone tissue engineering is a widely growing field that requires the combination of cells, scaffolds and signaling molecules. Adipose derived stem cells (ADSCs) are an accessible and abundant source of mesenchymal stem cells with high plasticity. Polycaprolactone/alginate (PCL/Alg) composite scaffolds have been used in bone regeneration and nano-hydroxyapatite (n-HA) is used as a reinforcing, osteoconductive component in scaffold fabrication. This study was conducted to assess the ability of three different PCL/Alg based scaffolds to induce osteogenic differentiation of ADSCs and to compare between them.</p><p><strong>Methods: </strong>The study comprised 5 groups; negative control group with ADSCs cultured in complete culture media, positive control group with ADSCs cultured in osteogenic differentiation media, and 3 experimental groups with ADSCs seeded onto 3 scaffolds: S1 (PCL/Alg), S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) respectively and cultured in osteogenic media. Mineralization and gene expression were assessed by Alizarin red S (ARS) staining and real time quantitative polymerase chain reaction (RT-qPCR). Evaluation was done at 7, 14 and 21 days.</p><p><strong>Results: </strong>ARS staining reflected a time dependent increase through days 7, 14 and 21, with S3 (PCL/Alg/Ca/n-HA) group showing the highest mineralization levels. RT-qPCR detected upregulation of <i>ALP</i> gene expression at day 7 and decline thereafter. S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) groups showed significantly higher gene expression levels than S1 (PCL/Alg).</p><p><strong>Conclusions: </strong>ADSCs and PCL/Alg-based scaffolds compose a good tissue engineering complex for bone regeneration. Addition of n-HA to PCL/Alg scaffolds and crosslinking with CaCl2 efficiently improve the osteogenic potential of ADSCs.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"14"},"PeriodicalIF":0.0,"publicationDate":"2020-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38409918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-07-20eCollection Date: 2020-01-01DOI: 10.21037/sci-2019-044
Elena S Pshennikova, Anna S Voronina
The tail of Xenopus tadpole is an excellent model for appendage regeneration studies. We analyzed the distribution pattern of the transcription factor Xvent-2 mRNA and protein in the beginning of the regeneration of Xenopus tadpole tail stumps after amputation. We revealed the emergence of Xvent-2 mRNA and protein in regeneration bud during the first day after amputation. The data obtained confirm that soon after amputation of the part of the Xenopus tadpole tail, there occurs the emergence of a structure, to some extend, resembling the early embryonic tail bud.
{"title":"Xvent-2 expression in regenerating <i>Xenopus</i> tails.","authors":"Elena S Pshennikova, Anna S Voronina","doi":"10.21037/sci-2019-044","DOIUrl":"https://doi.org/10.21037/sci-2019-044","url":null,"abstract":"<p><p>The tail of <i>Xenopus</i> tadpole is an excellent model for appendage regeneration studies. We analyzed the distribution pattern of the transcription factor Xvent-2 mRNA and protein in the beginning of the regeneration of <i>Xenopus</i> tadpole tail stumps after amputation. We revealed the emergence of Xvent-2 mRNA and protein in regeneration bud during the first day after amputation. The data obtained confirm that soon after amputation of the part of the <i>Xenopus</i> tadpole tail, there occurs the emergence of a structure, to some extend, resembling the early embryonic tail bud.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"13"},"PeriodicalIF":0.0,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2019-044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38293510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Radiation-induced skin injury remains a serious concern, which may limit the duration and dose of radiation treatment. The concept that stem cell injection may reduce tissue injury or assist its recovery after radiation has been recently argued. Herein, we examined the effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats.
Methods: This study is an experimental case control study. ASCs were isolated from peri uterine fat tissue of the rats. Then the rats received a 30 Gy single dose radiation to their buttocks skin using gamma radiation. Next day stem cells were transplanted subcutaneously in 16 rats as the case group. A group of 16 rats was considered as control group with radiation but no transplantation of stem cells. Then rats were examined and observed by macroscopic analysis and phenotypic scores during 4 weeks of follow up.
Results: The wound size in control group was significantly higher than case group in the second, third and fourth weeks of evaluation (P<0.05). There was no significant difference in skin lesion severity, pathological factors, and the onset of recovery signs between two groups (P>0.05).
Conclusions: It seems that using ASCs alone has not profound effects on reducing radiation-induced cutaneous complications, while combination of these cells with growth factors may produce more promising results.
{"title":"Therapeutic effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats.","authors":"Bijan Khademi, Sima Safari, Mohammad Amin Mosleh-Shirazi, Maral Mokhtari, Nooshafarin Chenari, Mahboobeh Razmkhah","doi":"10.21037/sci-2019-045","DOIUrl":"https://doi.org/10.21037/sci-2019-045","url":null,"abstract":"<p><strong>Background: </strong>Radiation-induced skin injury remains a serious concern, which may limit the duration and dose of radiation treatment. The concept that stem cell injection may reduce tissue injury or assist its recovery after radiation has been recently argued. Herein, we examined the effect of adipose-derived mesenchymal stem cells (ASCs) on radiation-induced skin damage in rats.</p><p><strong>Methods: </strong>This study is an experimental case control study. ASCs were isolated from peri uterine fat tissue of the rats. Then the rats received a 30 Gy single dose radiation to their buttocks skin using gamma radiation. Next day stem cells were transplanted subcutaneously in 16 rats as the case group. A group of 16 rats was considered as control group with radiation but no transplantation of stem cells. Then rats were examined and observed by macroscopic analysis and phenotypic scores during 4 weeks of follow up.</p><p><strong>Results: </strong>The wound size in control group was significantly higher than case group in the second, third and fourth weeks of evaluation (P<0.05). There was no significant difference in skin lesion severity, pathological factors, and the onset of recovery signs between two groups (P>0.05).</p><p><strong>Conclusions: </strong>It seems that using ASCs alone has not profound effects on reducing radiation-induced cutaneous complications, while combination of these cells with growth factors may produce more promising results.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2020-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2019-045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38293509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The COVID-19 pandemic has presented with debilitating respiratory consequences especially more pronounced in high risk individuals. Individuals with underlying systemic diseases are more prone and vulnerable to suffer severe consequences of SARS-CoV-2 infectivity. The pathophysiological changes identified cytokine storm mechanism for out setting the series of adverse clinical conditions. Thereby, associating it with high mortality rates. This warrants urgent consideration of divergent modalities such as the cellular therapy. Cellular therapy (CT) is a new medical paradigm wherein cellular material is administered to patients for therapeutic purposes. In this regard, mesenchymal stem cells (MSCs) have yielded the most promising results among stromal vascular fraction (SVF); placental cells; natural killer (NK) cell and platelet lysate respectively. Following the administration of the CT as per preferred route, these play pivotal role in modifying the microenvironment of the lung tissue with their distinct sets of mechanism. Evidences have shown how their immunomodulatory action repairs and prevents lung injury which in turn improvise the compliance of lungs. In this review article we have discussed these emerging novel approaches and their target step serving as a ray of hope to combat severe form of COVID-19. Currently these aren't approved for preventing or treating COVID-19 cases, however clinical trials are afoot to dispense the utmost understanding in terms of efficacy and safety concerns.
{"title":"Cellular Therapy: Shafts of Light Emerging for COVID-19.","authors":"Madhan Jeyaraman, Rajni Ranjan, Rakesh Kumar, Arunabh Arora, Dushyant Chaudhary, Satish Shringeri Ajay, Rashmi Jain","doi":"10.21037/sci-2020-022","DOIUrl":"10.21037/sci-2020-022","url":null,"abstract":"<p><p>The COVID-19 pandemic has presented with debilitating respiratory consequences especially more pronounced in high risk individuals. Individuals with underlying systemic diseases are more prone and vulnerable to suffer severe consequences of SARS-CoV-2 infectivity. The pathophysiological changes identified cytokine storm mechanism for out setting the series of adverse clinical conditions. Thereby, associating it with high mortality rates. This warrants urgent consideration of divergent modalities such as the cellular therapy. Cellular therapy (CT) is a new medical paradigm wherein cellular material is administered to patients for therapeutic purposes. In this regard, mesenchymal stem cells (MSCs) have yielded the most promising results among stromal vascular fraction (SVF); placental cells; natural killer (NK) cell and platelet lysate respectively. Following the administration of the CT as per preferred route, these play pivotal role in modifying the microenvironment of the lung tissue with their distinct sets of mechanism. Evidences have shown how their immunomodulatory action repairs and prevents lung injury which in turn improvise the compliance of lungs. In this review article we have discussed these emerging novel approaches and their target step serving as a ray of hope to combat severe form of COVID-19. Currently these aren't approved for preventing or treating COVID-19 cases, however clinical trials are afoot to dispense the utmost understanding in terms of efficacy and safety concerns.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7367471/pdf/sci-07-2020-022.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38186695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-17eCollection Date: 2020-01-01DOI: 10.21037/sci-2020-003
Zhifeng Wang, Hao Zhu, Shuhang Dai, Ke Liu, Chenxi Ge
Knee osteoarthritis (KOA) is a degenerative joint disorder manifested with deformity, pain, and functional disability due to damage of the articular cartilage. Cell therapy with mesenchymal stem cells (MSCs) holds great promise to alleviate or even cure the degenerative diseases including KOA. However, the evidence of efficacy of human adipose tissue-derived MSCs (hAdMSCs) on KOA therapy remains limited. Here, we evaluate the therapeutic efficacy of hAdMSCs for KOA, using a medial meniscal transection (MMT) rat model. Our study demonstrated that intra-articular injection of 1.25×106 hAdMSCs significantly attenuated MMT-induced joint pain in a KOA rats model. The results of this study provide strong evidence that hAdMSCs-based therapy can be regarded as a prominent treatment option for patients with KOA.
{"title":"Alleviation of medial meniscal transection-induced osteoarthritis pain in rats by human adipose derived mesenchymal stem cells.","authors":"Zhifeng Wang, Hao Zhu, Shuhang Dai, Ke Liu, Chenxi Ge","doi":"10.21037/sci-2020-003","DOIUrl":"https://doi.org/10.21037/sci-2020-003","url":null,"abstract":"<p><p>Knee osteoarthritis (KOA) is a degenerative joint disorder manifested with deformity, pain, and functional disability due to damage of the articular cartilage. Cell therapy with mesenchymal stem cells (MSCs) holds great promise to alleviate or even cure the degenerative diseases including KOA. However, the evidence of efficacy of human adipose tissue-derived MSCs (hAdMSCs) on KOA therapy remains limited. Here, we evaluate the therapeutic efficacy of hAdMSCs for KOA, using a medial meniscal transection (MMT) rat model. Our study demonstrated that intra-articular injection of 1.25×10<sup>6</sup> hAdMSCs significantly attenuated MMT-induced joint pain in a KOA rats model. The results of this study provide strong evidence that hAdMSCs-based therapy can be regarded as a prominent treatment option for patients with KOA.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2020-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38186694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-15eCollection Date: 2020-01-01DOI: 10.21037/sci-2020-001
Riham Mohamed Aly
Recent research reporting successful translation of stem cell therapies to patients have enriched the hope that such regenerative strategies may one day become a treatment for a wide range of vexing diseases. In fact, the past few years witnessed, a rather exponential advancement in clinical trials revolving around stem cell-based therapies. Some of these trials resulted in remarkable impact on various diseases. In this review, the advances and challenges for the development of stem-cell-based therapies are described, with focus on the use of stem cells in dentistry in addition to the advances reached in regenerative treatment modalities in several diseases. The limitations of these treatments and ongoing challenges in the field are also discussed while shedding light on the ethical and regulatory challenges in translating autologous stem cell-based interventions, into safe and effective therapies.
{"title":"Current state of stem cell-based therapies: an overview.","authors":"Riham Mohamed Aly","doi":"10.21037/sci-2020-001","DOIUrl":"https://doi.org/10.21037/sci-2020-001","url":null,"abstract":"<p><p>Recent research reporting successful translation of stem cell therapies to patients have enriched the hope that such regenerative strategies may one day become a treatment for a wide range of vexing diseases. In fact, the past few years witnessed, a rather exponential advancement in clinical trials revolving around stem cell-based therapies. Some of these trials resulted in remarkable impact on various diseases. In this review, the advances and challenges for the development of stem-cell-based therapies are described, with focus on the use of stem cells in dentistry in addition to the advances reached in regenerative treatment modalities in several diseases. The limitations of these treatments and ongoing challenges in the field are also discussed while shedding light on the ethical and regulatory challenges in translating autologous stem cell-based interventions, into safe and effective therapies.</p>","PeriodicalId":21938,"journal":{"name":"Stem cell investigation","volume":"7 ","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2020-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.21037/sci-2020-001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38186692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}