首页 > 最新文献

Structural Equation Modeling: A Multidisciplinary Journal最新文献

英文 中文
Comparison of Component-Based Structural Equation Modeling Methods in Testing Component Interaction Effects 基于构件的结构方程建模方法在构件交互效应测试中的比较
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-05-27 DOI: 10.1080/10705511.2025.2497088
Zhiyuan Shen, Gyeongcheol Cho, Heungsun Hwang
{"title":"Comparison of Component-Based Structural Equation Modeling Methods in Testing Component Interaction Effects","authors":"Zhiyuan Shen, Gyeongcheol Cho, Heungsun Hwang","doi":"10.1080/10705511.2025.2497088","DOIUrl":"https://doi.org/10.1080/10705511.2025.2497088","url":null,"abstract":"","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"9 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144193988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the Meaning of Measurement Invariance in Social Relations—Confirmatory Factor Analysis for Relative Variance Parameters 论社会关系测量不变性的意义——相对方差参数的验证性因子分析
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-05-13 DOI: 10.1080/10705511.2025.2492260
David Jendryczko, Fridtjof W. Nussbeck
{"title":"On the Meaning of Measurement Invariance in Social Relations—Confirmatory Factor Analysis for Relative Variance Parameters","authors":"David Jendryczko, Fridtjof W. Nussbeck","doi":"10.1080/10705511.2025.2492260","DOIUrl":"https://doi.org/10.1080/10705511.2025.2492260","url":null,"abstract":"","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"29 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144193791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Step Multilevel Latent Class Analysis in the Presence of Measurement Non-Equivalence. 测量不等价情况下的两步多水平潜在类分析。
IF 3.2 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-05-05 eCollection Date: 2025-01-01 DOI: 10.1080/10705511.2025.2490946
Johan Lyrvall, Jouni Kuha, Jennifer Oser

We consider estimation of two-level latent class models for clustered data, when the measurement model for the observed measurement items includes non-equivalence of measurement with respect to some observed covariates. The parameters of interest are coefficients in structural models for the latent classes given covariates. We propose a two-step method of estimation. This extends previously proposed methods of two-step estimation for models without non-equivalence of measurement by specifying the model used in the first step in such a way that it correctly accounts for non-equivalence. The properties of these two-step estimators are examined using simulation studies and an applied example.

当观察到的测量项目的测量模型包含相对于某些观察到的协变量的测量不等价时,我们考虑对聚类数据的两水平潜在类模型的估计。感兴趣的参数是给定协变量的潜在类的结构模型中的系数。我们提出了一种两步估计方法。这扩展了先前提出的两步估计方法,用于没有测量非等效性的模型,通过指定第一步中使用的模型,以正确地解释非等效性。通过仿真研究和应用实例验证了这两步估计器的性质。
{"title":"Two-Step Multilevel Latent Class Analysis in the Presence of Measurement Non-Equivalence.","authors":"Johan Lyrvall, Jouni Kuha, Jennifer Oser","doi":"10.1080/10705511.2025.2490946","DOIUrl":"10.1080/10705511.2025.2490946","url":null,"abstract":"<p><p>We consider estimation of two-level latent class models for clustered data, when the measurement model for the observed measurement items includes non-equivalence of measurement with respect to some observed covariates. The parameters of interest are coefficients in structural models for the latent classes given covariates. We propose a two-step method of estimation. This extends previously proposed methods of two-step estimation for models without non-equivalence of measurement by specifying the model used in the first step in such a way that it correctly accounts for non-equivalence. The properties of these two-step estimators are examined using simulation studies and an applied example.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"32 4","pages":"678-687"},"PeriodicalIF":3.2,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306680/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144754329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Latent Interaction Modeling with Ordinal Items: Evaluating Alternative Analytic Methods and Parceling Strategies 有序项目的潜在交互建模:评价备选分析方法和包装策略
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-05-05 DOI: 10.1080/10705511.2025.2487678
Lu Liu, Qian Zhang
{"title":"Latent Interaction Modeling with Ordinal Items: Evaluating Alternative Analytic Methods and Parceling Strategies","authors":"Lu Liu, Qian Zhang","doi":"10.1080/10705511.2025.2487678","DOIUrl":"https://doi.org/10.1080/10705511.2025.2487678","url":null,"abstract":"","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"109 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144193793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structural Equation Models with Social Networks 社会网络结构方程模型
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-05-05 DOI: 10.1080/10705511.2025.2488030
Ziqian Xu, Zhiyong Zhang
{"title":"Structural Equation Models with Social Networks","authors":"Ziqian Xu, Zhiyong Zhang","doi":"10.1080/10705511.2025.2488030","DOIUrl":"https://doi.org/10.1080/10705511.2025.2488030","url":null,"abstract":"","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"452 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144193794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
f MACS : Generalizing d MACS Effect Size for Measurement Noninvariance with Multiple Groups and Multiple Grouping Variables f MACS:多组和多组变量测量不变性的广义MACS效应量
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-05-05 DOI: 10.1080/10705511.2025.2484812
Mark H. C. Lai, Yichi Zhang, Meltem Ozcan, Winnie Wing-Yee Tse, Alexander Miles
{"title":"f MACS : Generalizing d MACS Effect Size for Measurement Noninvariance with Multiple Groups and Multiple Grouping Variables","authors":"Mark H. C. Lai, Yichi Zhang, Meltem Ozcan, Winnie Wing-Yee Tse, Alexander Miles","doi":"10.1080/10705511.2025.2484812","DOIUrl":"https://doi.org/10.1080/10705511.2025.2484812","url":null,"abstract":"","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"7 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144193797","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measurement Model Misspecification in Dynamic Structural Equation Models: Power, Reliability, and Other Considerations. 动态结构方程模型中的测量模型规格错误:功率、可靠性和其他考虑。
IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2025-02-13 DOI: 10.1080/10705511.2025.2452884
Hyungeun Oh, Michael D Hunter, Sy-Miin Chow

Dynamic Structural Equation Models (DSEMs) integrate multilevel modeling, time series analysis, and structural equation modeling within a Bayesian estimation framework, offering a versatile tool for analyzing intensive longitudinal data (ILD). However, the impact of measurement structure misspecification in DSEMs, especially under varying reliability conditions and model complexities, remains underexplored. Our Monte Carlo simulation revealed that omitting measurement errors when present led to severe biases in dynamic parameters regardless of reliability conditions, though power remained high. Increasing the number of participants and time points ameliorated but did not eliminate all biases. A single-indicator DSEMs with a measurement structure using composite scores showed similar performance to multiple indicators DSEMs. Empirical applications showed discrepancies in dynamic parameters based on the number of indicators and measurement structures used. Leveraging these findings, we provide design recommendations, functions for extending reliability indices from single-indicator to multiple-indicator models, and guidelines for power evaluations under different reliability conditions.

动态结构方程模型(dsem)在贝叶斯估计框架内集成了多层次建模、时间序列分析和结构方程建模,为分析密集纵向数据(ILD)提供了一种多功能工具。然而,在DSEMs中,特别是在不同的可靠性条件和模型复杂性下,测量结构规格错误的影响仍未得到充分的研究。我们的蒙特卡罗模拟显示,忽略测量误差会导致动态参数的严重偏差,而不管可靠性条件如何,尽管功率仍然很高。增加参与者数量和时间点可以改善但不能消除所有偏差。采用复合分数测量结构的单指标数字化决策模型与多指标数字化决策模型表现出相似的性能。实证应用表明,根据所使用的指标数量和测量结构,动态参数存在差异。利用这些发现,我们提供了设计建议,将可靠性指标从单指标模型扩展到多指标模型的函数,以及在不同可靠性条件下的功率评估指南。
{"title":"Measurement Model Misspecification in Dynamic Structural Equation Models: Power, Reliability, and Other Considerations.","authors":"Hyungeun Oh, Michael D Hunter, Sy-Miin Chow","doi":"10.1080/10705511.2025.2452884","DOIUrl":"10.1080/10705511.2025.2452884","url":null,"abstract":"<p><p>Dynamic Structural Equation Models (DSEMs) integrate multilevel modeling, time series analysis, and structural equation modeling within a Bayesian estimation framework, offering a versatile tool for analyzing intensive longitudinal data (ILD). However, the impact of measurement structure misspecification in DSEMs, especially under varying reliability conditions and model complexities, remains underexplored. Our Monte Carlo simulation revealed that omitting measurement errors when present led to severe biases in dynamic parameters regardless of reliability conditions, though power remained high. Increasing the number of participants and time points ameliorated but did not eliminate all biases. A single-indicator DSEMs with a measurement structure using composite scores showed similar performance to multiple indicators DSEMs. Empirical applications showed discrepancies in dynamic parameters based on the number of indicators and measurement structures used. Leveraging these findings, we provide design recommendations, functions for extending reliability indices from single-indicator to multiple-indicator models, and guidelines for power evaluations under different reliability conditions.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"32 3","pages":"511-528"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183645/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144485705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unsupervised Model Construction in Continuous-Time. 连续时间的无监督模型构建。
IF 2.5 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI: 10.1080/10705511.2024.2429544
Jonathan J Park, Zachary F Fisher, Michael D Hunter, Chad Shenk, Michael Russell, Peter C M Molenaar, Sy-Miin Chow

Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms N = 1 model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.

许多协调个人和群体水平结果的进步都发生在离散时间建模框架的背景下。离散时间模型直观,对得到的动态结构提供相对简单的解释;然而,它们不具备在连续时间框架中拟合模型的灵活性。我们引入了群迭代多模型估计(GIMME)的连续时间扩展ct-gimme;Gates & Molenaar, 2012)程序,使研究人员能够适应复杂的,高维动态网络在连续时间。我们的研究结果表明,ct-gimme通过在多个受试者之间汇集信息,在连续时间内优于N = 1模型拟合。同样,在样本内异质性存在的情况下,ct-gimme优于组水平模型拟合。我们总结了一个实证说明,并强调了与识别有意义的起始值有关的方法的局限性。
{"title":"Unsupervised Model Construction in Continuous-Time.","authors":"Jonathan J Park, Zachary F Fisher, Michael D Hunter, Chad Shenk, Michael Russell, Peter C M Molenaar, Sy-Miin Chow","doi":"10.1080/10705511.2024.2429544","DOIUrl":"10.1080/10705511.2024.2429544","url":null,"abstract":"<p><p>Many of the advancements reconciling individual- and group-level results have occurred in the context of a discrete-time modeling framework. Discrete-time models are intuitive and offer relatively simple interpretations for the resulting dynamic structures; however, they do not possess the flexibility of models fitted in the continuous-time framework. We introduce ct-gimme, a continuous-time extension of the group iterative multiple model estimation (GIMME; Gates & Molenaar, 2012) procedure which enables researchers to fit complex, high dimensional dynamic networks in continuous-time. Our results indicate that ct-gimme outperforms <math><mi>N</mi> <mo>=</mo> <mn>1</mn></math> model fitting in continuous-time by pooling information across multiple subjects. Likewise, ct-gimme outperforms group-level model fitting in the presence of within-sample heterogeneity. We conclude with an empirical illustration and highlight limitations of the approach relating to identification of meaningful starting values.</p>","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"32 3","pages":"377-399"},"PeriodicalIF":2.5,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12083780/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144094829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Structural Equation Model Forests Performance to Identify Omitted Influential Covariates 评估结构方程模型森林识别被忽略的影响变量的性能
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-11-07 DOI: 10.1080/10705511.2024.2417866
John Alexander Silva Díaz, Moritz Heene, Andreas M. Brandmaier
Model misspecification is typical in applied structural equation modeling (SEM). Traditional specification search methods, such as modification indices, search for misspecifications within the mode...
在应用结构方程建模(SEM)中,模型失范是一种典型现象。传统的规范搜索方法,如修正指数,会在模式内搜索错误规范...
{"title":"Evaluation of Structural Equation Model Forests Performance to Identify Omitted Influential Covariates","authors":"John Alexander Silva Díaz, Moritz Heene, Andreas M. Brandmaier","doi":"10.1080/10705511.2024.2417866","DOIUrl":"https://doi.org/10.1080/10705511.2024.2417866","url":null,"abstract":"Model misspecification is typical in applied structural equation modeling (SEM). Traditional specification search methods, such as modification indices, search for misspecifications within the mode...","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"61 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach 使用三步估计法处理潜类分析中的缺失数据
IF 6 2区 心理学 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Pub Date : 2024-10-29 DOI: 10.1080/10705511.2024.2410240
Sarah Depaoli, Fan Jia, Marieke Visser
This study specifically focuses on addressing the challenges related to employing missing data techniques when estimating a conditional Latent Class Analysis (LCA) model. In the context of a condit...
本研究特别关注在估算条件潜类分析(LCA)模型时采用缺失数据技术所面临的挑战。在有条件潜类分析模型的背景下,缺失数据是一个重要的问题。
{"title":"Addressing Missing Data in Latent Class Analysis When Using a Three-Step Estimation Approach","authors":"Sarah Depaoli, Fan Jia, Marieke Visser","doi":"10.1080/10705511.2024.2410240","DOIUrl":"https://doi.org/10.1080/10705511.2024.2410240","url":null,"abstract":"This study specifically focuses on addressing the challenges related to employing missing data techniques when estimating a conditional Latent Class Analysis (LCA) model. In the context of a condit...","PeriodicalId":21964,"journal":{"name":"Structural Equation Modeling: A Multidisciplinary Journal","volume":"7 1","pages":""},"PeriodicalIF":6.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Structural Equation Modeling: A Multidisciplinary Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1