Background Fibrinogen variants as a result of alternative messenger RNA splicing or protein degradation can affect fibrin(ogen) functions. The levels of these variants might be altered during coronavirus disease 2019 (COVID-19), potentially affecting disease severity or the thrombosis risk. Aim To investigate the levels of fibrinogen variants in plasma of patients with COVID-19. Methods In this case-control study, we measured levels of functional fibrinogen using the Clauss assay. Enzyme-linked immunosorbent assays were used to measure antigen levels of total, intact (nondegraded Aα chain), extended Aα chain (α E ), and γ' fibrinogen in healthy controls, patients with pneumococcal infection in the intensive care unit (ICU), ward patients with COVID-19, and ICU patients with COVID-19 (with and without thrombosis, two time points). Results Healthy controls and ward patients with COVID-19 ( n = 10) showed similar fibrinogen (variant) levels. ICU patients with COVID-19 who later did ( n = 19) or did not develop thrombosis ( n = 18) and ICU patients with pneumococcal infection ( n = 6) had higher absolute levels of functional, total, intact, and α E fibrinogen than healthy controls ( n = 7). The relative α E fibrinogen levels were higher in ICU patients with COVID-19 than in healthy controls, while relative γ' fibrinogen levels were lower. After diagnosis of thrombosis, only the functional fibrinogen levels were higher in ICU patients with COVID-19 and thrombosis than in those without, while no differences were observed in the other fibrinogen variants. Conclusion Our results show that severe COVID-19 is associated with increased levels of α E fibrinogen and decreased relative levels of γ' fibrinogen, which may be a cause or consequence of severe disease, but this is not associated with the development of thrombosis.
This retrospective study, utilizing U.S. electronic health record (EHR) data from January 2013 to December 2020, sought to assess whether rivaroxaban and apixaban had similar effectiveness and safety in the treatment of cancer-associated venous thromboembolism (VTE) in patients with a cancer type not associated with a high risk of bleeding. We included adults diagnosed with active cancer, excluding esophageal, gastric, unresected colorectal, bladder, noncerebral central nervous system cancers and leukemia, who experienced VTE and received a therapeutic VTE dose of rivaroxaban or apixaban on day 7 post-VTE, and were active in the EHR ≥12 months prior to the VTE. Primary outcome was the composite of recurrent VTE or any bleed resulting in hospitalization at 3 months. Secondary outcomes included recurrent VTE, any bleed resulting in hospitalization, any critical organ bleed, and composites of these outcomes at 3 and 6 months. Inverse probability of treatment-weighted Cox regression was used to calculate hazard ratios (HRs) with 95% confidence intervals (CIs). We included 1,344 apixaban and 1,093 rivaroxaban patients. At 3 months, rivaroxaban was found to have similar hazard to apixaban for developing recurrent VTE or any bleed resulting in hospitalization (HR: 0.87; 95% CI: 0.60-1.27). No differences were observed between cohorts for this outcome at 6 months (HR: 1.00; 95% CI: 0.71-1.40) or for any other outcome at 3 or 6 months. In conclusion, patients receiving rivaroxaban or apixaban showed similar risks of the composite of recurrent VTE or any bleed resulting in hospitalization in patients with cancer-associated VTE. This study was registered at www.clinicaltrials.gov as #NCT05461807. Key Points Rivaroxaban and apixaban have similar effectiveness and safety for treatment of cancer-associated VTE through 6 months.Clinicians should therefore consider patient preference and adherence when choosing the optimal anticoagulant.
Background Direct factor Xa inhibitors (FXaIs) account for most oral anticoagulant use and FXaI-associated bleeding events are common. Clinicians have variable national and regional access to specific FXaI reversal agents such as andexanet alfa. Many centers have adopted the use of prothrombin complex concentrates (PCCs) as hemostatic therapy for FXaI-associated major bleeding events. PCC does not impact circulating FXaI levels and its mechanism of action to achieve hemostasis in FXaI-associated bleeding is uncertain. While PCC increases quantitative thrombin generation assay (TGA) parameters, it does not correct FXaI-altered thrombin generation kinetics, nor does it normalize thrombin generation. Clinical data supporting the use of PCC are based on cohort studies reporting clinical hemostatic efficacy, which is difficult to measure. The benefits of PCC for FXaI-associated bleeding beyond supportive care are uncertain. Objective GAUGE is a prospective observational study designed to measure the effects of four-factor PCC administration (Octaplex) on TGA parameters among patients with FXaI-associated bleeding or needing urgent surgery. Methods Laboratory outcomes will include the mean paired change in TGA parameters from pre- to post-PCC administration and the proportion of participants whose post-PCC TGA values fall within a defined reference range. Clinical outcomes will include hemostatic efficacy, thromboembolic complications, and all-cause death at 30 days post-PCC. Conclusion Development of a viable and universally accessible FXaI bleed management strategy is crucial. GAUGE will provide in vivo data on the effects of PCC among patients with FXaI-associated bleeding.
Background Intracerebral hemorrhage is the most serious complication of anticoagulant therapy but the effects of different types of oral anticoagulants on the expansion of these hemorrhages are still unclear. Clinical studies have revealed controversial results; more robust and long-term clinical evaluations are necessary to define their outcomes. An alternative is to test the effect of these drugs in experimental models of intracerebral bleeding induced in animals. Aims To test new oral anticoagulants (dabigatran etexilate, rivaroxaban, and apixaban) in an experimental model of intracerebral hemorrhage induced by collagenase injection into the brain striatum of rats. Warfarin was used for comparison. Methods Ex vivo anticoagulant assays and an experimental model of venous thrombosis were employed to determine the doses and periods of time required for the anticoagulants to achieve their maximum effects. Subsequently, volumes of brain hematoma were evaluated after administration of the anticoagulants, using these same parameters. Volumes of brain hematoma were evaluated by magnetic resonance imaging, H&E (hematoxylin and eosin) staining, and Evans blue extravasation. Neuromotor function was assessed by the elevated body swing test. Results and Conclusions The new oral anticoagulants did not increase intracranial bleeding compared with control animals, while warfarin markedly favored expansion of the hematomas, as revealed by magnetic resonance imaging and H&E staining. Dabigatran etexilate caused a modest but statistically significant increase in Evans blue extravasation. We did not observe significant differences in elevated body swing tests among the experimental groups. The new oral anticoagulants may provide a better control over a brain hemorrhage than warfarin.