N Miosge, K Flachsbart, W Goetz, W Schultz, H Kresse, R Herken
The distribution of decorin and biglycan was investigated at the light and electron microscopical level in adult human articular cartilage. In general, the amount of decorin and biglycan was found to decrease with the depth of the layer of the cartilage. Decorin was found in the interterritorial matrix where most of the collagen is located. This fits in well with the assumption that decorin may modulate collagen metabolism. Biglycan was found next to the chondrocytes in the pericellular matrix and is assumed to be responsible for cellular activities. At the ultrastructural level, decorin was localized in the interterritorial matrix and in vesicles in chondrocytes. Biglycan was found, usually though not exclusively in the pericellular matrix. Both small proteoglycans were detected close to and on the collagen fibres and also associated with the more globular structures of the matrix between the fibrils. A double-staining approach revealed that the two molecules could be located along the same collagen fibril. However, staining for biglycan and decorin was not observed simultaneously within the same region of the fibre.
{"title":"Light and electron microscopical immunohistochemical localization of the small proteoglycan core proteins decorin and biglycan in human knee joint cartilage.","authors":"N Miosge, K Flachsbart, W Goetz, W Schultz, H Kresse, R Herken","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The distribution of decorin and biglycan was investigated at the light and electron microscopical level in adult human articular cartilage. In general, the amount of decorin and biglycan was found to decrease with the depth of the layer of the cartilage. Decorin was found in the interterritorial matrix where most of the collagen is located. This fits in well with the assumption that decorin may modulate collagen metabolism. Biglycan was found next to the chondrocytes in the pericellular matrix and is assumed to be responsible for cellular activities. At the ultrastructural level, decorin was localized in the interterritorial matrix and in vesicles in chondrocytes. Biglycan was found, usually though not exclusively in the pericellular matrix. Both small proteoglycans were detected close to and on the collagen fibres and also associated with the more globular structures of the matrix between the fibrils. A double-staining approach revealed that the two molecules could be located along the same collagen fibril. However, staining for biglycan and decorin was not observed simultaneously within the same region of the fibre.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18895990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The expression of the intermediate filament protein, vimentin, was studied in skeletal muscle during a cycle of degeneration and regeneration. Venom from the Australian tiger snake, Notechis scutatus scutatus, was used to initiate the breakdown of the soleus muscle of young, mature rats in vivo. Cryosections and Western blots of muscle samples were labelled using antibodies to vimentin, and examined at fixed time points after venom injection. Vimentin was absent in control adult muscle fibres, but was identified in activated satellite cells 12 h after venom assault. The amount of this protein rose during the early stages of regeneration, reaching its peak at 2-3 days. At this time, the expression of muscle-specific intermediate filament protein, desmin, began. As the abundance of desmin increased with the maturation of the regenerating myofibres, the abundance of vimentin declined until it was no longer detectable in mature regenerated fibres. It is suggested that vimentin plays an important role during satellite cell activation in the early stages of regeneration, and that the expression of vimentin may act as a stimulus for the expression of desmin at later stages of regeneration.
{"title":"The expression of vimentin in satellite cells of regenerating skeletal muscle in vivo.","authors":"R Vater, M J Cullen, J B Harris","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The expression of the intermediate filament protein, vimentin, was studied in skeletal muscle during a cycle of degeneration and regeneration. Venom from the Australian tiger snake, Notechis scutatus scutatus, was used to initiate the breakdown of the soleus muscle of young, mature rats in vivo. Cryosections and Western blots of muscle samples were labelled using antibodies to vimentin, and examined at fixed time points after venom injection. Vimentin was absent in control adult muscle fibres, but was identified in activated satellite cells 12 h after venom assault. The amount of this protein rose during the early stages of regeneration, reaching its peak at 2-3 days. At this time, the expression of muscle-specific intermediate filament protein, desmin, began. As the abundance of desmin increased with the maturation of the regenerating myofibres, the abundance of vimentin declined until it was no longer detectable in mature regenerated fibres. It is suggested that vimentin plays an important role during satellite cell activation in the early stages of regeneration, and that the expression of vimentin may act as a stimulus for the expression of desmin at later stages of regeneration.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18895987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A simple and reliable method has been developed for the in situ LR White embedding of cell monolayers grown on glass cover-slips. Combined with cytochemical or immunological procedures, this technique allows light and/or electron microscopy investigations of a large number of cells in the same horizontal plane within a relatively short period of time. It can be applied to cells grown on microgrid finder cover-slips which allows a distinct site of even an individual cell of a monolayer to be studied at first at the light microscope level and subsequently at the electron microscope level. Hence, it is also suitable for controlling manipulation of single cells, followed by their serial sectioning after relocation in the electron microscope.
{"title":"In situ flat embedding of monolayers and cell relocation in the acrylic resin LR white for comparative light and electron microscopy studies.","authors":"M Steiner, C Schöfer, W Mosgoeller","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A simple and reliable method has been developed for the in situ LR White embedding of cell monolayers grown on glass cover-slips. Combined with cytochemical or immunological procedures, this technique allows light and/or electron microscopy investigations of a large number of cells in the same horizontal plane within a relatively short period of time. It can be applied to cells grown on microgrid finder cover-slips which allows a distinct site of even an individual cell of a monolayer to be studied at first at the light microscope level and subsequently at the electron microscope level. Hence, it is also suitable for controlling manipulation of single cells, followed by their serial sectioning after relocation in the electron microscope.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18895989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xanthine oxidoreductase is an enzyme which has the unusual property that it can exist in a dehydrogenase form which uses NAD+ and an oxidase form which uses oxygen as electron acceptor. Both forms have a high affinity for hypoxanthine and xanthine as substrates. In addition, conversion of one form to the other may occur under different conditions. The exact function of the enzyme is still unknown but it seems to play a role in purine catabolism, detoxification of xenobiotics and antioxidant capacity by producing urate. The oxidase form produces reactive oxygen species and, therefore, the enzyme is thought to be involved in various pathological processes such as tissue injury due to ischaemia followed by reperfusion, but its role is still a matter of debate. The present review summarizes information that has become available about the enzyme. Interpretations of contradictory findings are presented in order to reduce confusion that still exists with respect to the role of this enzyme in physiology and pathology.
{"title":"A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase.","authors":"A Kooij","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Xanthine oxidoreductase is an enzyme which has the unusual property that it can exist in a dehydrogenase form which uses NAD+ and an oxidase form which uses oxygen as electron acceptor. Both forms have a high affinity for hypoxanthine and xanthine as substrates. In addition, conversion of one form to the other may occur under different conditions. The exact function of the enzyme is still unknown but it seems to play a role in purine catabolism, detoxification of xenobiotics and antioxidant capacity by producing urate. The oxidase form produces reactive oxygen species and, therefore, the enzyme is thought to be involved in various pathological processes such as tissue injury due to ischaemia followed by reperfusion, but its role is still a matter of debate. The present review summarizes information that has become available about the enzyme. Interpretations of contradictory findings are presented in order to reduce confusion that still exists with respect to the role of this enzyme in physiology and pathology.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18895991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Annual Symposium of the Czech Society of Histochemistry and Cytochemistry. Brno, Czech Republic, August 30-September 2, 1993. Abstracts.","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18868247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2) N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Helix aspersa agglutinin (HAA), Psophocarpus tetragonolobus agglutinin (PTA), Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4), Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) and Ricinus communis agglutinin (RCA-I)); (4) L-fucose group (Ulex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.
使用11种不同的荧光凝集素偶联物来揭示牛眼睛前段冷冻切片中碳水化合物残基的位置。凝集素对以下5个主要碳水化合物组具有特异性:(1)葡萄糖/甘露糖组(cona);(2) n -乙酰氨基葡萄糖(小麦胚芽凝集素);(3)半乳糖/ n-乙酰半乳糖胺组(Dolichos biflorus凝集素(DBA)、Helix pomatia凝集素(HPA)、Helix aspersa凝集素(HAA)、phocarpus tetragonolobus凝集素(PTA)、Griffonia simplicifolia凝集素- i - b4 (GSA-I-B4)、Artocarpus integrifolia凝集素(JAC)、peanut凝集素(PNA)和Ricinus communis凝集素(RCA-I));(4) L-焦点组(UEA-I);(5)唾液酸基团(小麦胚芽凝集素(WGA))。除uea - 1外,所有凝集素均与不同结构广泛反应,结果表明,牛眼前段碳水化合物残基的表达模式不同。uea - 1仅与上皮结构结合。一些凝集素与结膜上皮和角膜上皮的顶端细胞表面反应非常强烈,表明上皮的糖萼有不同的糖基化。此外,结膜上皮和角膜上皮的结合模式与某些凝集素不同:PNA和RCA-I完全不结合,GSA-I-B4仅与角膜上皮结合非常弱,而它们与结膜上皮结合。此外,HPA、HAA、PNA和WGA不与角膜基底膜结合,而与结膜和血管基底膜结合。这表明角膜基底膜与其他基底膜有某种不同。具有相同碳水化合物特异性的凝集素(DBA、HPA、HAA和PTA)与切片的反应几乎相同,但存在一些差异:DBA不与结膜和巩膜的基底膜结合,但与角膜的基底膜结合,而具有相同碳水化合物特异性的其他凝集素则相反。此外,PTA与小梁网的结合可以忽略不计,而具有相同碳水化合物特异性的其他凝集素与小梁网反应。GSA-I-B4与血管内皮反应强烈,不与基质结合,使血管非常突出,可作为内皮标记物。这种凝集素也与角膜内皮发生强烈反应。因此,GSA-I-B4似乎是牛组织中血管和角膜内皮细胞的特异性标记物。
{"title":"Lectin binding in the anterior segment of the bovine eye.","authors":"A Tuori, I Virtanen, H Uusitalo","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Eleven different fluorescent lectin-conjugates were used to reveal the location of carbohydrate residues in frozen sections of the anterior segment of bovine eyes. The lectins were specific for the following five major carbohydrate groups: (1) glucose/mannose group (Concanavalin A (Con A)); (2) N-acetylglucosamine group (wheat germ agglutinin (WGA)); (3) galactose/N-acetylgalactosamine group (Dolichos biflorus agglutinin (DBA), Helix pomatia agglutinin (HPA), Helix aspersa agglutinin (HAA), Psophocarpus tetragonolobus agglutinin (PTA), Griffonia simplicifolia agglutinin-I-B4 (GSA-I-B4), Artocarpus integrifolia agglutinin (JAC), peanut agglutinin (PNA) and Ricinus communis agglutinin (RCA-I)); (4) L-fucose group (Ulex europaeus agglutinin (UEA-I)); (5) sialic acid group (wheat germ agglutinin (WGA)). All the studied lectins except UEA-I reacted widely with different structures and the results suggest that there are distinct patterns of expression of carbohydrate residues in the anterior segment of the bovine eye. UEA-I bound only to epithelial structures. Some of the lectins reacted very intensely with apical cell surfaces of conjunctival and corneal epithelia suggesting a different glycosylation at the glycocalyx of the epithelia. Also, the binding patterns of conjunctival and corneal epithelia differed with some of the lectins: PNA and RCA-I did not bind at all, and GSA-I-B4 bound only very weakly to the epithelium of the cornea, whereas they bound to the epithelium of the conjunctiva. In addition, HPA, HAA, PNA and WGA did not bind to the corneal basement membrane, but bound to the conjunctiva and vascular basement membranes. This suggests that corneal basement membrane is somehow different from other basement membranes. Lectins with the same carbohydrate specificity (DBA, HPA, HAA and PTA) reacted with the sections almost identically, but some differences were noticed: DBA did not bind to the basement membrane of the conjunctiva and the sclera and did bind to the basement membrane of the cornea, whereas other lectins with same carbohydrate specificities reacted vice versa. Also, the binding of PTA to the trabecular meshwork was negligible, whereas other lectins with the same carbohydrate specificities reacted with the trabecular meshwork. GSA-I-B4 reacted avidly with the endothelium of blood vessels and did not bind to the stroma, so that it made blood vessels very prominent and it might be used as an endothelial marker. This lectin also reacted avidly with the corneal endothelium. Therefore, GSA-I-B4 appears to be a specific marker in bovine tissues for both blood vessel and corneal endothelium cells.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18882457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
G J Pinero, S Parker, V Rundus, E L Hertzberg, R Minkoff
Rabbit polyclonal antibodies to amino acids 346-360 of connexin 43, the 'heart' gap junction protein, were employed to immunolocalize connexin 43 gap junctions in the neonatal rat molar tooth germ. Connexin 43 appears early in the differentiation of both ectodermally derived and ectomesenchymally derived cells of the developing tooth. Connexin 43 immunoreactivity is present in the epithelial components of the enamel organ, including the area of the proximal and distal junctional complexes of the ameloblast layer, and the stratum intermedium, stellate reticulum and outer enamel epithelium. Secretory odontoblasts and developing alveolar bone also display a pattern of connexin 43 immunostaining. Both the epithelial and ectomesenchymally-derived components of the developing tooth acquire connexin 43 channels in a manner that correlates with cell differentiation. In addition, three regions can be defined by connexin 43 immunostaining: the epithelia of the enamel organ that are derived from the oral epithelium, the odontoblast layer derived from the ectomesenchyme, and the alveolar bone. The results suggest that connexin 43 may provide the mechanism for functional compartmentalization of the tissues associated with tooth formation. Compartmentalization suggested by connexin 43 expression could play important roles in the development and functions of these tissues.
{"title":"Immunolocalization of connexin 43 in the tooth germ of the neonatal rat.","authors":"G J Pinero, S Parker, V Rundus, E L Hertzberg, R Minkoff","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>Rabbit polyclonal antibodies to amino acids 346-360 of connexin 43, the 'heart' gap junction protein, were employed to immunolocalize connexin 43 gap junctions in the neonatal rat molar tooth germ. Connexin 43 appears early in the differentiation of both ectodermally derived and ectomesenchymally derived cells of the developing tooth. Connexin 43 immunoreactivity is present in the epithelial components of the enamel organ, including the area of the proximal and distal junctional complexes of the ameloblast layer, and the stratum intermedium, stellate reticulum and outer enamel epithelium. Secretory odontoblasts and developing alveolar bone also display a pattern of connexin 43 immunostaining. Both the epithelial and ectomesenchymally-derived components of the developing tooth acquire connexin 43 channels in a manner that correlates with cell differentiation. In addition, three regions can be defined by connexin 43 immunostaining: the epithelia of the enamel organ that are derived from the oral epithelium, the odontoblast layer derived from the ectomesenchyme, and the alveolar bone. The results suggest that connexin 43 may provide the mechanism for functional compartmentalization of the tissues associated with tooth formation. Compartmentalization suggested by connexin 43 expression could play important roles in the development and functions of these tissues.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18881881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A two-dimensional electrophoresis technique for analysing sections of human tissue is described. Cryostat sections, 10 microns thick, are placed on an isoelectric focusing gel and then transferred to an SDS gel in the second dimension. The protein pattern is visualized by silver staining and is thought to represent soluble proteins. The silver-stained proteins were found to be both reproducible and, to the extent tested, organ-specific. This method was used to analyse 43 synovial membranes from patients suffering from rheumatoid arthritis or degenerative joint diseases. The analysis did not reveal any specific protein pattern for rheumatoid arthritis. The protein spot number was not related to the cause of arthritis. However, the total protein spot number was related to the histomorphological synovitis type, with those exhibiting either an exudative or proliferative synovitis pattern possessing significantly higher protein spot numbers than those specimens exhibiting a sero-fibrous or lympho-plasmacytic pattern of synovitis.
{"title":"Two-dimensional cryostat section electrophoresis: a novel method and its application to the diseased synovial membrane.","authors":"P Fritz, A Mischlinski, C Wicherek, J Saal","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>A two-dimensional electrophoresis technique for analysing sections of human tissue is described. Cryostat sections, 10 microns thick, are placed on an isoelectric focusing gel and then transferred to an SDS gel in the second dimension. The protein pattern is visualized by silver staining and is thought to represent soluble proteins. The silver-stained proteins were found to be both reproducible and, to the extent tested, organ-specific. This method was used to analyse 43 synovial membranes from patients suffering from rheumatoid arthritis or degenerative joint diseases. The analysis did not reveal any specific protein pattern for rheumatoid arthritis. The protein spot number was not related to the cause of arthritis. However, the total protein spot number was related to the histomorphological synovitis type, with those exhibiting either an exudative or proliferative synovitis pattern possessing significantly higher protein spot numbers than those specimens exhibiting a sero-fibrous or lympho-plasmacytic pattern of synovitis.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18882458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The ultracytochemical localization of particulate guanylate cyclase has been studied in lamb olfactory mucosa after activation with rat atrial natriuretic factor (rANF), porcine brain natriuretic peptide (pBNP), porcine C-type natriuretic peptide (pCNP) or rat brain natriuretic peptide (rBNP). Particulate guanylate cyclase is the receptor for these peptides and recently two subtypes of the cyclase have been identified. These isoforms are stimulated differently by ANF, BNP and CNP. Under our experimental conditions, rANF, pCNP and pBNP were strong activators of particulate guanylate cyclase in lamb olfactory mucosa, as demonstrated by the presence of reaction product. Samples incubated in basal conditions without rANF, pCNP or pBNP, or samples incubated in presence of rBNP did not reveal any cyclase activity. The rANF-stimulated cyclase activity was localized in the apical portion of olfactory epithelium. pCNP-stimulated guanylate cyclase was detected to the lamina propria in association with secretory cells of Bowman's glands and with cells in close relation with Bowman's glands (elongated cells and myoepithelial cells). The cyclase activity stimulated by pBNP was limited to cells of Bowman's glands. The present data indicate that ANF and CNP are recognized by different receptors and that BNP and CNP bind to the same receptor.
{"title":"Ultracytochemical localization of particulate guanylate cyclase after stimulation with natriuretic peptides in lamb olfactory mucosa.","authors":"A Spreca, M G Rambotti","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The ultracytochemical localization of particulate guanylate cyclase has been studied in lamb olfactory mucosa after activation with rat atrial natriuretic factor (rANF), porcine brain natriuretic peptide (pBNP), porcine C-type natriuretic peptide (pCNP) or rat brain natriuretic peptide (rBNP). Particulate guanylate cyclase is the receptor for these peptides and recently two subtypes of the cyclase have been identified. These isoforms are stimulated differently by ANF, BNP and CNP. Under our experimental conditions, rANF, pCNP and pBNP were strong activators of particulate guanylate cyclase in lamb olfactory mucosa, as demonstrated by the presence of reaction product. Samples incubated in basal conditions without rANF, pCNP or pBNP, or samples incubated in presence of rBNP did not reveal any cyclase activity. The rANF-stimulated cyclase activity was localized in the apical portion of olfactory epithelium. pCNP-stimulated guanylate cyclase was detected to the lamina propria in association with secretory cells of Bowman's glands and with cells in close relation with Bowman's glands (elongated cells and myoepithelial cells). The cyclase activity stimulated by pBNP was limited to cells of Bowman's glands. The present data indicate that ANF and CNP are recognized by different receptors and that BNP and CNP bind to the same receptor.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18882456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The protective capacities of intratracheally-instilled antileukoprotease and alpha 1-proteinase inhibitor towards human neutrophil elastase (HNE)-induced pulmonary injuries were compared in hamsters. The antiproteases were instilled in equimolar amounts up to 20 h before HNE instillation. At all intervals, both inhibitors were able to inhibit HNE-induced emphysema efficiently. At 1 h before HNE instillation, alpha 1-proteinase inhibitor was more effective in this regard than antileukoprotease. alpha 1-Proteinase inhibitor, instilled 1 to 12 h before HNE, efficiently inhibited HNE-induced haemorrhage, while the antileukoprotease protected haemorrhage only when it was administered 1 h before HNE. The development of secretory cell metaplasia was affected only when both inhibitors were instilled 1 h before HNE. In a second series of experiments, the localization of the two antiproteases after intratracheal instillation in hamster was investigated using an indirect immunofluorescence technique. Up to 20 h after installation, antileukoprotease was found to be associated with elastin fibres at all points of time investigated. In contrast, alpha 1-proteinase inhibitor was observed to be located in the alveolar lining and diffusely in the alveolar lung tissue at all points of time investigated. No association of the inhibitor with elastin fibres was found. We conclude that the fraction of antileukoprotease associated with the elastic fibre may be important in the protection of HNE-induced pulmonary emphysema.
{"title":"Intratracheally-instilled antileukoprotease and alpha 1-proteinase inhibitor: effect on human neutrophil elastase-induced experimental emphysema and pulmonary localization.","authors":"A Rudolphus, J A Kramps, I Mauve, J H Dijkman","doi":"","DOIUrl":"","url":null,"abstract":"<p><p>The protective capacities of intratracheally-instilled antileukoprotease and alpha 1-proteinase inhibitor towards human neutrophil elastase (HNE)-induced pulmonary injuries were compared in hamsters. The antiproteases were instilled in equimolar amounts up to 20 h before HNE instillation. At all intervals, both inhibitors were able to inhibit HNE-induced emphysema efficiently. At 1 h before HNE instillation, alpha 1-proteinase inhibitor was more effective in this regard than antileukoprotease. alpha 1-Proteinase inhibitor, instilled 1 to 12 h before HNE, efficiently inhibited HNE-induced haemorrhage, while the antileukoprotease protected haemorrhage only when it was administered 1 h before HNE. The development of secretory cell metaplasia was affected only when both inhibitors were instilled 1 h before HNE. In a second series of experiments, the localization of the two antiproteases after intratracheal instillation in hamster was investigated using an indirect immunofluorescence technique. Up to 20 h after installation, antileukoprotease was found to be associated with elastin fibres at all points of time investigated. In contrast, alpha 1-proteinase inhibitor was observed to be located in the alveolar lining and diffusely in the alveolar lung tissue at all points of time investigated. No association of the inhibitor with elastin fibres was found. We conclude that the fraction of antileukoprotease associated with the elastic fibre may be important in the protection of HNE-induced pulmonary emphysema.</p>","PeriodicalId":22439,"journal":{"name":"The Histochemical Journal","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"18882459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}