首页 > 最新文献

The Imaging Science Journal最新文献

英文 中文
K-Net-Deep joint segmentation with Taylor driving training optimization based deep learning for brain tumor classification using MRI 基于K-Net-Deep关节分割与Taylor驾驶训练优化的深度学习脑肿瘤MRI分类
Pub Date : 2023-05-16 DOI: 10.1080/13682199.2023.2208963
V. Prasad, Vairamuthu S, Selva Rani B
{"title":"K-Net-Deep joint segmentation with Taylor driving training optimization based deep learning for brain tumor classification using MRI","authors":"V. Prasad, Vairamuthu S, Selva Rani B","doi":"10.1080/13682199.2023.2208963","DOIUrl":"https://doi.org/10.1080/13682199.2023.2208963","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76452403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Video compression using improved diamond search hybrid teaching and learning-based optimization model 基于改进菱形搜索的视频压缩混合教与学优化模型
Pub Date : 2023-05-16 DOI: 10.1080/13682199.2023.2187514
B. Veerasamy, B. Bharathi, A. Ahilan
ABSTRACT Video compression is necessary to recreate a video without sacrificing quality. Nowadays, researchers are focusing on global optimization approaches to determine the optical flow of the neighboring pixels in video processing. In this work, a novel improved diamond search-hybrid teaching-learning based optimization (IDS-HTLBO) methodology has been proposed to compress the videos and increase the video quality. This method uses a diamond search pattern with a secure number of search points for per frame of the video. The hybridization of DS algorithm and TLBO algorithm are applied in this methodology to reduce computational complexity. Moreover, this method reduces the computational unpredictability of block matching. The quality of the image was validated with 3D reconstruction by the structured light approaches. The experimental result shows that the proposed IDS-HTLBO algorithm achieves a maximum average value of 53.17 dB, 0.44 and 11.57 in terms of peak-to-signal-noise ratio, mean squared error, and compression ratio respectively.
视频压缩是在不牺牲质量的情况下重建视频的必要条件。目前,研究人员正在研究全局优化方法来确定视频处理中相邻像素的光流。本文提出了一种改进的基于菱形搜索-混合教学的优化方法(IDS-HTLBO)来压缩视频,提高视频质量。该方法使用菱形搜索模式,为视频的每帧提供安全数量的搜索点。该方法采用了DS算法和TLBO算法的混合,降低了计算复杂度。此外,该方法降低了块匹配的计算不可预测性。通过结构光方法进行三维重建,验证了图像的质量。实验结果表明,IDS-HTLBO算法的峰值信噪比、均方误差和压缩比的最大平均值分别为53.17 dB、0.44和11.57。
{"title":"Video compression using improved diamond search hybrid teaching and learning-based optimization model","authors":"B. Veerasamy, B. Bharathi, A. Ahilan","doi":"10.1080/13682199.2023.2187514","DOIUrl":"https://doi.org/10.1080/13682199.2023.2187514","url":null,"abstract":"ABSTRACT\u0000 Video compression is necessary to recreate a video without sacrificing quality. Nowadays, researchers are focusing on global optimization approaches to determine the optical flow of the neighboring pixels in video processing. In this work, a novel improved diamond search-hybrid teaching-learning based optimization (IDS-HTLBO) methodology has been proposed to compress the videos and increase the video quality. This method uses a diamond search pattern with a secure number of search points for per frame of the video. The hybridization of DS algorithm and TLBO algorithm are applied in this methodology to reduce computational complexity. Moreover, this method reduces the computational unpredictability of block matching. The quality of the image was validated with 3D reconstruction by the structured light approaches. The experimental result shows that the proposed IDS-HTLBO algorithm achieves a maximum average value of 53.17 dB, 0.44 and 11.57 in terms of peak-to-signal-noise ratio, mean squared error, and compression ratio respectively.","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"19 1","pages":"573 - 584"},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82804587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An advanced fuzzy C-Means algorithm for the tissue segmentation from brain magnetic resonance images in the presence of noise and intensity inhomogeneity 一种先进的模糊c均值算法用于存在噪声和强度不均匀性的脑磁共振图像的组织分割
Pub Date : 2023-05-16 DOI: 10.1080/13682199.2023.2210400
Sandhya Gudise, K. Giri Babu, T. Satya Savithri
{"title":"An advanced fuzzy C-Means algorithm for the tissue segmentation from brain magnetic resonance images in the presence of noise and intensity inhomogeneity","authors":"Sandhya Gudise, K. Giri Babu, T. Satya Savithri","doi":"10.1080/13682199.2023.2210400","DOIUrl":"https://doi.org/10.1080/13682199.2023.2210400","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90328769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Skull stripping on multimodal brain MRI scans using thresholding and morphology 颅骨剥离的多模态脑MRI扫描使用阈值和形态学
Pub Date : 2023-05-15 DOI: 10.1080/13682199.2023.2208923
S. Y. Bhat, Afnan Naqshbandi, M. Abulaish
{"title":"Skull stripping on multimodal brain MRI scans using thresholding and morphology","authors":"S. Y. Bhat, Afnan Naqshbandi, M. Abulaish","doi":"10.1080/13682199.2023.2208923","DOIUrl":"https://doi.org/10.1080/13682199.2023.2208923","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"172 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77299533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
SHBO-based U-Net for image segmentation and FSHBO-enabled DBN for classification using hyperspectral image 基于shbo的U-Net用于图像分割,基于fshbo的DBN用于高光谱图像分类
Pub Date : 2023-05-13 DOI: 10.1080/13682199.2023.2208927
T. Subba Reddy, V. Krishna Reddy, R. Vijaya Kumar Reddy, Dr. Chandra Sekhar Kolli, V. Sitharamulu, M. Chandrababu
{"title":"SHBO-based U-Net for image segmentation and FSHBO-enabled DBN for classification using hyperspectral image","authors":"T. Subba Reddy, V. Krishna Reddy, R. Vijaya Kumar Reddy, Dr. Chandra Sekhar Kolli, V. Sitharamulu, M. Chandrababu","doi":"10.1080/13682199.2023.2208927","DOIUrl":"https://doi.org/10.1080/13682199.2023.2208927","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85515729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Depthwise convolution based pyramid ResNet model for accurate detection of COVID-19 from chest X-Ray images 基于深度卷积的金字塔ResNet模型在胸部x线图像中准确检测COVID-19
Pub Date : 2023-05-13 DOI: 10.1080/13682199.2023.2210402
K. G. Satheesh Kumar, V. Arunachalam
The global pandemic of coronavirus disease 2019 (COVID-19) causes severe respiratory problems in humans. The Chest X-ray (CXR) imaging technique majorly assists in detecting abnormalities in the chest and lung areas caused by COVID-19. Hence, developing an automatic system for CXR-based COVID-19 detection is vital for disease diagnosis. To accomplish this requirement, an enhanced Residual Network (ResNet) model is proposed in this paper for accurate COVID-19 detection. The proposed model combines the Depthwise Separable Convolutional ResNet and Pyramid dilated module(DSC-ResNet-PDM) for deep feature extraction. Employing the DSC layer minimizes the number of parameters to mitigate the overfitting issue. Further, the pyramid dilated module is used for extracting multi-scale features. The extracted features are finally fed into the optimized Medium Gaussian kernel Support Vector Machine classifier (MGKSVM) for COVID-19 detection. The proposed model attained an accuracy of 99.5%, which is comparatively higher than the standard ResNet50 and ResNet101 models. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)
2019年全球大流行的冠状病毒病(COVID-19)会导致人类严重的呼吸道问题。胸部x线(CXR)成像技术主要有助于发现由COVID-19引起的胸部和肺部异常。因此,开发基于cxr的COVID-19自动检测系统对于疾病诊断至关重要。为了实现这一要求,本文提出了一种增强的残差网络(ResNet)模型,用于准确检测COVID-19。该模型结合深度可分卷积ResNet和金字塔扩展模块(DSC-ResNet-PDM)进行深度特征提取。采用DSC层减少了参数的数量,以减轻过拟合问题。进一步,利用金字塔扩展模块提取多尺度特征。最后将提取的特征输入到优化的中高斯核支持向量机分类器(MGKSVM)中进行COVID-19检测。该模型的准确率为99.5%,相对于ResNet50和ResNet101标准模型有所提高。image Science Journal版权归Taylor & Francis Ltd所有,未经版权所有者明确书面许可,不得将其内容复制或通过电子邮件发送到多个网站或发布到listserv。但是,用户可以打印、下载或通过电子邮件发送文章供个人使用。这可以删节。对副本的准确性不作任何保证。用户应参阅原始出版版本的材料的完整。(版权适用于所有人。)
{"title":"Depthwise convolution based pyramid ResNet model for accurate detection of COVID-19 from chest X-Ray images","authors":"K. G. Satheesh Kumar, V. Arunachalam","doi":"10.1080/13682199.2023.2210402","DOIUrl":"https://doi.org/10.1080/13682199.2023.2210402","url":null,"abstract":"The global pandemic of coronavirus disease 2019 (COVID-19) causes severe respiratory problems in humans. The Chest X-ray (CXR) imaging technique majorly assists in detecting abnormalities in the chest and lung areas caused by COVID-19. Hence, developing an automatic system for CXR-based COVID-19 detection is vital for disease diagnosis. To accomplish this requirement, an enhanced Residual Network (ResNet) model is proposed in this paper for accurate COVID-19 detection. The proposed model combines the Depthwise Separable Convolutional ResNet and Pyramid dilated module(DSC-ResNet-PDM) for deep feature extraction. Employing the DSC layer minimizes the number of parameters to mitigate the overfitting issue. Further, the pyramid dilated module is used for extracting multi-scale features. The extracted features are finally fed into the optimized Medium Gaussian kernel Support Vector Machine classifier (MGKSVM) for COVID-19 detection. The proposed model attained an accuracy of 99.5%, which is comparatively higher than the standard ResNet50 and ResNet101 models. [ FROM AUTHOR] Copyright of Imaging Science Journal is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"11 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91429046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep remote fusion: development of improved deep CNN with atrous convolution-based remote sensing image fusion 深度遥感融合:基于亚历克斯卷积的遥感图像融合改进深度CNN的发展
Pub Date : 2023-05-11 DOI: 10.1080/13682199.2023.2206761
S. Nagarathinam, A. Vasuki, K. Paramasivam
{"title":"Deep remote fusion: development of improved deep CNN with atrous convolution-based remote sensing image fusion","authors":"S. Nagarathinam, A. Vasuki, K. Paramasivam","doi":"10.1080/13682199.2023.2206761","DOIUrl":"https://doi.org/10.1080/13682199.2023.2206761","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88824304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
An efficient brain tumor classification using MRI images with hybrid deep intelligence model 基于混合深度智能模型的MRI图像高效脑肿瘤分类
Pub Date : 2023-05-11 DOI: 10.1080/13682199.2023.2207892
A. V. Reddy, P. Mallick, B. Srinivasa Rao, Phaneendra Kanakamedala
{"title":"An efficient brain tumor classification using MRI images with hybrid deep intelligence model","authors":"A. V. Reddy, P. Mallick, B. Srinivasa Rao, Phaneendra Kanakamedala","doi":"10.1080/13682199.2023.2207892","DOIUrl":"https://doi.org/10.1080/13682199.2023.2207892","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"39 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79150326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Opponent colour median-based scale invariant local ternary pattern: a new feature descriptor for moving object detection 基于对手颜色中值的尺度不变局部三元模式:一种新的运动目标检测特征描述符
Pub Date : 2023-05-08 DOI: 10.1080/13682199.2023.2207887
K. Kalirajan, K. Balaji
{"title":"Opponent colour median-based scale invariant local ternary pattern: a new feature descriptor for moving object detection","authors":"K. Kalirajan, K. Balaji","doi":"10.1080/13682199.2023.2207887","DOIUrl":"https://doi.org/10.1080/13682199.2023.2207887","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"94 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75927551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Brain tumor segmentation and classification using optimized U-Net 基于优化U-Net的脑肿瘤分割与分类
Pub Date : 2023-05-07 DOI: 10.1080/13682199.2023.2200614
S. K V
{"title":"Brain tumor segmentation and classification using optimized U-Net","authors":"S. K V","doi":"10.1080/13682199.2023.2200614","DOIUrl":"https://doi.org/10.1080/13682199.2023.2200614","url":null,"abstract":"","PeriodicalId":22456,"journal":{"name":"The Imaging Science Journal","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82120439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Imaging Science Journal
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1