Omics technologies have significantly advanced the prediction and therapeutic approaches for chronic kidney disease (CKD) by providing comprehensive molecular insights. This is a review of the current state and future prospects of integrating biomarkers into the clinical practice for CKD, aiming to improve patient outcomes by targeted therapeutic interventions. In fact, the integration of genomic, transcriptomic, proteomic, and metabolomic data has enhanced our understanding of CKD pathogenesis and identified novel biomarkers for an early diagnosis and targeted treatment. Advanced computational methods and artificial intelligence (AI) have further refined multi-omics data analysis, leading to more accurate prediction models for disease progression and therapeutic responses. These developments highlight the potential to improve CKD patient care with a precise and individualized treatment plan .
{"title":"Omics Studies in CKD: Diagnostic Opportunities and Therapeutic Potential.","authors":"Merita Rroji, Goce Spasovski","doi":"10.1002/pmic.202400151","DOIUrl":"https://doi.org/10.1002/pmic.202400151","url":null,"abstract":"<p><p>Omics technologies have significantly advanced the prediction and therapeutic approaches for chronic kidney disease (CKD) by providing comprehensive molecular insights. This is a review of the current state and future prospects of integrating biomarkers into the clinical practice for CKD, aiming to improve patient outcomes by targeted therapeutic interventions. In fact, the integration of genomic, transcriptomic, proteomic, and metabolomic data has enhanced our understanding of CKD pathogenesis and identified novel biomarkers for an early diagnosis and targeted treatment. Advanced computational methods and artificial intelligence (AI) have further refined multi-omics data analysis, leading to more accurate prediction models for disease progression and therapeutic responses. These developments highlight the potential to improve CKD patient care with a precise and individualized treatment plan .</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400151"},"PeriodicalIF":3.4,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transforming peptide hormone prediction: The role of AI in modern proteomics.","authors":"Nguyen Quoc Khanh Le","doi":"10.1002/pmic.202400156","DOIUrl":"https://doi.org/10.1002/pmic.202400156","url":null,"abstract":"","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e2400156"},"PeriodicalIF":3.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Drug protein-target identification in past decades required screening compound libraries against known proteins to determine drugs binding to specific protein. Protein targets used in drug-target screening were selected predominantly used laborious genetic manipulation assays. In 2013, a team led by Pär Nordlund from Karolinska Institutet (Stockholm, Sweden) developed Cellular Thermal Shift Assay (CETSA), a method which, for the first time, enabled the possibility of drug protein-target identification in the complex cellular proteome. High throughput, quantitative mass spectrometry (MS) proteomics appeared as a compatible analytical method of choice to complement CETSA, aka Thermal Protein Profiling assay (TPP). Since the seminal CETSA-MS/ TPP-MS publications, different protein-target deconvolution strategies emerged including Proteome Integral Solubility Alteration (PISA). The work of Emery-Corbin et al. (Proteomics 2024, 2300644), titled Proteome Integral Solubility Alteration via label-free DIA approach (PISA-DIA), introduces Data-Independent Acquisition (DIA) as a quantification method, opening new avenues in drug target-deconvolution field. Application of DIA for target deconvolution offers attractive alternative to widely used data dependent methodology.
过去几十年中,药物蛋白质靶点鉴定需要针对已知蛋白质筛选化合物库,以确定药物与特定蛋白质的结合情况。用于药物靶点筛选的蛋白质靶点主要是通过费力的基因操作试验筛选出来的。2013年,瑞典斯德哥尔摩卡罗林斯卡医学院的Pär Nordlund领导的团队开发出细胞热转移分析法(CETSA),首次实现了在复杂的细胞蛋白质组中鉴定药物蛋白质靶标的可能性。高通量、定量质谱(MS)蛋白质组学是对 CETSA(又称热蛋白质轮廓分析法(TPP))的补充,是一种兼容的分析方法。自开创性的 CETSA-MS/ TPP-MS 出版以来,出现了不同的蛋白质目标解卷积策略,包括蛋白质组整体溶解度改变(PISA)。Emery-Corbin 等人的研究(Proteomics 2024, 2300644)题为 "通过无标记 DIA 方法进行蛋白质组整体溶解度改变(PISA-DIA)",引入了数据独立获取(DIA)作为一种定量方法,为药物靶标解卷积领域开辟了新途径。应用 DIA 进行靶标解卷积为广泛使用的数据依赖方法提供了极具吸引力的替代方法。
{"title":"Proteome integral solubility alteration via label-free DIA approach (PISA-DIA), game changer in drug target deconvolution.","authors":"Zheng Ser, Radoslaw M Sobota","doi":"10.1002/pmic.202400147","DOIUrl":"https://doi.org/10.1002/pmic.202400147","url":null,"abstract":"<p><p>Drug protein-target identification in past decades required screening compound libraries against known proteins to determine drugs binding to specific protein. Protein targets used in drug-target screening were selected predominantly used laborious genetic manipulation assays. In 2013, a team led by Pär Nordlund from Karolinska Institutet (Stockholm, Sweden) developed Cellular Thermal Shift Assay (CETSA), a method which, for the first time, enabled the possibility of drug protein-target identification in the complex cellular proteome. High throughput, quantitative mass spectrometry (MS) proteomics appeared as a compatible analytical method of choice to complement CETSA, aka Thermal Protein Profiling assay (TPP). Since the seminal CETSA-MS/ TPP-MS publications, different protein-target deconvolution strategies emerged including Proteome Integral Solubility Alteration (PISA). The work of Emery-Corbin et al. (Proteomics 2024, 2300644), titled Proteome Integral Solubility Alteration via label-free DIA approach (PISA-DIA), introduces Data-Independent Acquisition (DIA) as a quantification method, opening new avenues in drug target-deconvolution field. Application of DIA for target deconvolution offers attractive alternative to widely used data dependent methodology.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e2400147"},"PeriodicalIF":3.4,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cheol Woo Min, Ravi Gupta, Gi Hyun Lee, Jun-Hyeon Cho, Yu-Jin Kim, Yiming Wang, Ki-Hong Jung, Sun Tae Kim
Salinity stress induces ionic and osmotic imbalances in rice plants that in turn negatively affect the photosynthesis rate, resulting in growth retardation and yield penalty. Efforts have, therefore, been carried out to understand the mechanism of salt tolerance, however, the complexity of biological processes at proteome levels remains a major challenge. Here, we performed a comparative proteome and phosphoproteome profiling of microsome enriched fractions of salt-tolerant (cv. IR73; indica) and salt-susceptible (cv. Dongjin/DJ; japonica) rice varieties. This approach led to the identification of 5856 proteins, of which 473 and 484 proteins showed differential modulation between DJ and IR73 sample sets, respectively. The phosphoproteome analysis led to the identification of a total of 10,873 phosphopeptides of which 2929 and 3049 phosphopeptides showed significant differences in DJ and IR73 sample sets, respectively. The integration of proteome and phosphoproteome data showed activation of ABA and Ca2+ signaling components exclusively in the salt-tolerant variety IR73 in response to salinity stress. Taken together, our results highlight the changes at proteome and phosphoproteome levels and provide a mechanistic understanding of salinity stress tolerance in rice.
{"title":"Integrative Proteomic and Phosphoproteomic Profiling Reveals the Salt-Responsive Mechanisms in Two Rice Varieties (Oryza Sativa subsp. Japonica and Indica).","authors":"Cheol Woo Min, Ravi Gupta, Gi Hyun Lee, Jun-Hyeon Cho, Yu-Jin Kim, Yiming Wang, Ki-Hong Jung, Sun Tae Kim","doi":"10.1002/pmic.202400251","DOIUrl":"https://doi.org/10.1002/pmic.202400251","url":null,"abstract":"<p><p>Salinity stress induces ionic and osmotic imbalances in rice plants that in turn negatively affect the photosynthesis rate, resulting in growth retardation and yield penalty. Efforts have, therefore, been carried out to understand the mechanism of salt tolerance, however, the complexity of biological processes at proteome levels remains a major challenge. Here, we performed a comparative proteome and phosphoproteome profiling of microsome enriched fractions of salt-tolerant (cv. IR73; indica) and salt-susceptible (cv. Dongjin/DJ; japonica) rice varieties. This approach led to the identification of 5856 proteins, of which 473 and 484 proteins showed differential modulation between DJ and IR73 sample sets, respectively. The phosphoproteome analysis led to the identification of a total of 10,873 phosphopeptides of which 2929 and 3049 phosphopeptides showed significant differences in DJ and IR73 sample sets, respectively. The integration of proteome and phosphoproteome data showed activation of ABA and Ca<sup>2+</sup> signaling components exclusively in the salt-tolerant variety IR73 in response to salinity stress. Taken together, our results highlight the changes at proteome and phosphoproteome levels and provide a mechanistic understanding of salinity stress tolerance in rice.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400251"},"PeriodicalIF":3.4,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sintayehu D Daba, Punyatoya Panda, Uma K Aryal, Alecia M Kiszonas, Sean M Finnie, Rebecca J McGee
Seed development is complex, influenced by genetic and environmental factors. Understanding proteome profiles at different seed developmental stages is key to improving seed composition and quality. We used label-free quantitative proteomics to analyze round and wrinkled pea seeds at five growth stages: 4, 7, 12, 15, and days after anthesis (DAA), and at maturity. Wrinkled peas had lower starch content (30%) compared to round peas (47%-55%). Proteomic analysis identified 3659 protein groups, with 21%-24% shared across growth stages. More proteins were identified during early seed development than at maturity. Statistical analysis found 735 significantly different proteins between wrinkled and round seeds, regardless of the growth stage. The detected proteins were categorized into 31 functional classes, including metabolic enzymes, proteins involved in protein biosynthesis and homeostasis, carbohydrate metabolism, and cell division. Cell division-related proteins were more abundant in early stages, while storage proteins were more abundant later in seed development. Wrinkled seeds had lower levels of the starch-branching enzyme (SBEI), which is essential for amylopectin biosynthesis. Seed storage proteins like legumin and albumin (PA2) were more abundant in round peas, whereas vicilin was more prevalent in wrinkled peas. This study enhances our understanding of seed development in round and wrinkled peas. The study highlighted the seed growth patterns and protein profiles in round and wrinkled peas during seed development. It showed how protein accumulation changed, particularly focusing on proteins implicated in cell division, seed reserve metabolism, as well as storage proteins and protease inhibitors. These findings underscore the crucial role of these proteins in seed development. By linking the proteins identified to Cameor-based pea reference genome, our research can open avenues for deeper investigations into individual proteins, facilitate their practical application in crop improvement, and advance our knowledge of seed development.
{"title":"Proteomics analysis of round and wrinkled pea (Pisum sativum L.) seeds during different development periods.","authors":"Sintayehu D Daba, Punyatoya Panda, Uma K Aryal, Alecia M Kiszonas, Sean M Finnie, Rebecca J McGee","doi":"10.1002/pmic.202300363","DOIUrl":"https://doi.org/10.1002/pmic.202300363","url":null,"abstract":"<p><p>Seed development is complex, influenced by genetic and environmental factors. Understanding proteome profiles at different seed developmental stages is key to improving seed composition and quality. We used label-free quantitative proteomics to analyze round and wrinkled pea seeds at five growth stages: 4, 7, 12, 15, and days after anthesis (DAA), and at maturity. Wrinkled peas had lower starch content (30%) compared to round peas (47%-55%). Proteomic analysis identified 3659 protein groups, with 21%-24% shared across growth stages. More proteins were identified during early seed development than at maturity. Statistical analysis found 735 significantly different proteins between wrinkled and round seeds, regardless of the growth stage. The detected proteins were categorized into 31 functional classes, including metabolic enzymes, proteins involved in protein biosynthesis and homeostasis, carbohydrate metabolism, and cell division. Cell division-related proteins were more abundant in early stages, while storage proteins were more abundant later in seed development. Wrinkled seeds had lower levels of the starch-branching enzyme (SBEI), which is essential for amylopectin biosynthesis. Seed storage proteins like legumin and albumin (PA2) were more abundant in round peas, whereas vicilin was more prevalent in wrinkled peas. This study enhances our understanding of seed development in round and wrinkled peas. The study highlighted the seed growth patterns and protein profiles in round and wrinkled peas during seed development. It showed how protein accumulation changed, particularly focusing on proteins implicated in cell division, seed reserve metabolism, as well as storage proteins and protease inhibitors. These findings underscore the crucial role of these proteins in seed development. By linking the proteins identified to Cameor-based pea reference genome, our research can open avenues for deeper investigations into individual proteins, facilitate their practical application in crop improvement, and advance our knowledge of seed development.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e2300363"},"PeriodicalIF":3.4,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Justine Demeuse, William Determe, Elodie Grifnée, Philippe Massonnet, Matthieu Schoumacher, Loreen Huyghebeart, Thomas Dubrowski, Stéphanie Peeters, Caroline Le Goff, Etienne Cavalier
With an aging population, the increased interest in the monitoring of skeletal diseases such as osteoporosis led to significant progress in the discovery and measurement of bone turnover biomarkers since the 2000s. Multiple markers derived from type I collagen, such as CTX, NTX, PINP, and ICTP, have been developed. Extensive efforts have been devoted to characterizing these molecules; however, their complex crosslinked structures have posed significant analytical challenges, and to date, these biomarkers remain poorly characterized. Previous attempts at characterization involved gel-based separation methods and MALDI-TOF analysis on collagen peptides directly extracted from bone. However, using bone powder, which is rich in collagen, does not represent the true structure of the peptides in the biofluids as it was cleaved. In this study, our goal was to characterize plasma and serum CTX for subsequent LC-MS/MS method development. We extracted and characterized type I collagen peptides directly from human plasma and serum using a proteomics workflow that integrates preparative LC, affinity chromatography, and HR-MS. Subsequently, we successfully identified numerous CTX species, providing valuable insights into the characterization of these crucial biomarkers.
随着人口老龄化的加剧,人们对监测骨质疏松症等骨骼疾病的兴趣与日俱增,自 2000 年代以来,骨转换生物标志物的发现和测量工作取得了重大进展。目前已开发出多种源自 I 型胶原的标记物,如 CTX、NTX、PINP 和 ICTP。然而,这些分子复杂的交联结构给分析带来了巨大的挑战,迄今为止,这些生物标记物的特征仍然不甚明了。以前的表征尝试包括基于凝胶的分离方法和对直接从骨中提取的胶原蛋白肽进行 MALDI-TOF 分析。然而,使用富含胶原蛋白的骨粉并不能代表生物流体中被裂解的肽的真实结构。在本研究中,我们的目标是表征血浆和血清中的 CTX,以便进行后续的 LC-MS/MS 方法开发。我们直接从人体血浆和血清中提取了 I 型胶原蛋白肽,并利用蛋白质组学工作流程对其进行了表征,该工作流程整合了制备 LC、亲和色谱法和 HR-MS。随后,我们成功鉴定了多种 CTX 物种,为鉴定这些重要生物标记物提供了宝贵的见解。
{"title":"Characterization of Trivalently Crosslinked C-Terminal Telopeptide of Type I Collagen (CTX) Species in Human Plasma and Serum Using High-Resolution Mass Spectrometry.","authors":"Justine Demeuse, William Determe, Elodie Grifnée, Philippe Massonnet, Matthieu Schoumacher, Loreen Huyghebeart, Thomas Dubrowski, Stéphanie Peeters, Caroline Le Goff, Etienne Cavalier","doi":"10.1002/pmic.202400027","DOIUrl":"https://doi.org/10.1002/pmic.202400027","url":null,"abstract":"<p><p>With an aging population, the increased interest in the monitoring of skeletal diseases such as osteoporosis led to significant progress in the discovery and measurement of bone turnover biomarkers since the 2000s. Multiple markers derived from type I collagen, such as CTX, NTX, PINP, and ICTP, have been developed. Extensive efforts have been devoted to characterizing these molecules; however, their complex crosslinked structures have posed significant analytical challenges, and to date, these biomarkers remain poorly characterized. Previous attempts at characterization involved gel-based separation methods and MALDI-TOF analysis on collagen peptides directly extracted from bone. However, using bone powder, which is rich in collagen, does not represent the true structure of the peptides in the biofluids as it was cleaved. In this study, our goal was to characterize plasma and serum CTX for subsequent LC-MS/MS method development. We extracted and characterized type I collagen peptides directly from human plasma and serum using a proteomics workflow that integrates preparative LC, affinity chromatography, and HR-MS. Subsequently, we successfully identified numerous CTX species, providing valuable insights into the characterization of these crucial biomarkers.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202400027"},"PeriodicalIF":3.4,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142491727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The study uses Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH)-MS in conjunction with secretome proteomics to identify key proteins that Pseudomonas aeruginosa secretes against methicillin-resistant Staphylococcus aureus (MRSA). Variations in the inhibition zones indicated differences in strain resistance. Multivariate statistical methods were applied to filter the proteomic results, revealing five potential protein biomarkers, including Peptidase M23. Gene ontology (GO) analysis and sequence alignment supported their antibacterial activity. Thus, SWATH-MS provides a comprehensive understanding of the secretome of P. aeruginosa in its action against MRSA, guiding future antibacterial research.
{"title":"SWATH-MS Based Secretome Proteomic Analysis of Pseudomonas aeruginosa Against MRSA.","authors":"Yi-Feng Zheng, Yu-Sheng Lin, Jing-Wen Huang, Kuo-Tung Tang, Cheng-Yu Kuo, Wei-Chen Wang, Han-Ju Chien, Chih-Jui Chang, Nien-Jen Hu, Chien-Chen Lai","doi":"10.1002/pmic.202300649","DOIUrl":"https://doi.org/10.1002/pmic.202300649","url":null,"abstract":"<p><p>The study uses Sequential Window Acquisition of All Theoretical Fragment Ion Mass Spectra (SWATH)-MS in conjunction with secretome proteomics to identify key proteins that Pseudomonas aeruginosa secretes against methicillin-resistant Staphylococcus aureus (MRSA). Variations in the inhibition zones indicated differences in strain resistance. Multivariate statistical methods were applied to filter the proteomic results, revealing five potential protein biomarkers, including Peptidase M23. Gene ontology (GO) analysis and sequence alignment supported their antibacterial activity. Thus, SWATH-MS provides a comprehensive understanding of the secretome of P. aeruginosa in its action against MRSA, guiding future antibacterial research.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":" ","pages":"e202300649"},"PeriodicalIF":3.4,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142454346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Astronaut proteomics: Japan leads the way for transformative studies in space","authors":"Alexia Tasoula, Nathaniel Szewczyk","doi":"10.1002/pmic.202300645","DOIUrl":"10.1002/pmic.202300645","url":null,"abstract":"","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"24 20","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142398872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}