首页 > 最新文献

The Visual Computer最新文献

英文 中文
MVSFusion: infrared and visible image fusion method for multiple visual scenarios MVSFusion:针对多种视觉场景的红外与可见光图像融合方法
Pub Date : 2024-02-14 DOI: 10.1007/s00371-024-03273-x
Chengzhou Li, Kangjian He, Dan Xu, Yueying Luo, Yiqiao Zhou
{"title":"MVSFusion: infrared and visible image fusion method for multiple visual scenarios","authors":"Chengzhou Li, Kangjian He, Dan Xu, Yueying Luo, Yiqiao Zhou","doi":"10.1007/s00371-024-03273-x","DOIUrl":"https://doi.org/10.1007/s00371-024-03273-x","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"39 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139779005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Frequency domain-enhanced transformer for single image deraining 频域增强型变压器用于单幅图像导出
Pub Date : 2024-02-14 DOI: 10.1007/s00371-023-03252-8
Mingwen Shao, Zhiyuan Bao, Weihan Liu, Yuanjian Qiao, Yecong Wan
{"title":"Frequency domain-enhanced transformer for single image deraining","authors":"Mingwen Shao, Zhiyuan Bao, Weihan Liu, Yuanjian Qiao, Yecong Wan","doi":"10.1007/s00371-023-03252-8","DOIUrl":"https://doi.org/10.1007/s00371-023-03252-8","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"296 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139836612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: 3D reconstruction method based on N-step phase unwrapping 更正:基于 N 步相位解包的 3D 重建方法
Pub Date : 2023-12-08 DOI: 10.1007/s00371-023-03181-6
Lin Wang, Lina Yi, Yuetong Zhang, Xiaofang Wang, Wei Wang, Xiangjun Wang, Xuan Wang
{"title":"Correction: 3D reconstruction method based on N-step phase unwrapping","authors":"Lin Wang, Lina Yi, Yuetong Zhang, Xiaofang Wang, Wei Wang, Xiangjun Wang, Xuan Wang","doi":"10.1007/s00371-023-03181-6","DOIUrl":"https://doi.org/10.1007/s00371-023-03181-6","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"22 25","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138589527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A self-attention-based fusion framework for facial expression recognition in wavelet domain 基于自我注意力的小波域面部表情识别融合框架
Pub Date : 2023-12-07 DOI: 10.1007/s00371-023-03168-3
Sakshi Indolia, S. Nigam, Rajiv Singh
{"title":"A self-attention-based fusion framework for facial expression recognition in wavelet domain","authors":"Sakshi Indolia, S. Nigam, Rajiv Singh","doi":"10.1007/s00371-023-03168-3","DOIUrl":"https://doi.org/10.1007/s00371-023-03168-3","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"88 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Welcome to the Year 2024 欢迎来到 2024 年
Pub Date : 2023-12-07 DOI: 10.1007/s00371-023-03186-1
Nadia Magnenat-Thalmann
{"title":"Welcome to the Year 2024","authors":"Nadia Magnenat-Thalmann","doi":"10.1007/s00371-023-03186-1","DOIUrl":"https://doi.org/10.1007/s00371-023-03186-1","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"59 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138590972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Icg: intensity and color gradient operator on RGB images for visual object tracking Icg: RGB图像上的强度和颜色梯度算子,用于视觉对象跟踪
Pub Date : 2023-11-11 DOI: 10.1007/s00371-023-03136-x
Mohana Murali Dasari, Rama Krishna Gorthi
{"title":"Icg: intensity and color gradient operator on RGB images for visual object tracking","authors":"Mohana Murali Dasari, Rama Krishna Gorthi","doi":"10.1007/s00371-023-03136-x","DOIUrl":"https://doi.org/10.1007/s00371-023-03136-x","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"35 15","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boundary-aware small object detection with attention and interaction 具有注意和交互的边界感知小目标检测
Pub Date : 2023-11-11 DOI: 10.1007/s00371-023-03144-x
Qihan Feng, Zhiwen Shao, Zhixiao Wang
{"title":"Boundary-aware small object detection with attention and interaction","authors":"Qihan Feng, Zhiwen Shao, Zhixiao Wang","doi":"10.1007/s00371-023-03144-x","DOIUrl":"https://doi.org/10.1007/s00371-023-03144-x","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"16 24","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135042892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MPA-GNet: multi-scale parallel adaptive graph network for 3D human pose estimation MPA-GNet:用于三维人体姿态估计的多尺度并行自适应图网络
Pub Date : 2023-11-10 DOI: 10.1007/s00371-023-03142-z
Ru Jia, Honghong Yang, Li Zhao, Xiaojun Wu, Yumei Zhang
{"title":"MPA-GNet: multi-scale parallel adaptive graph network for 3D human pose estimation","authors":"Ru Jia, Honghong Yang, Li Zhao, Xiaojun Wu, Yumei Zhang","doi":"10.1007/s00371-023-03142-z","DOIUrl":"https://doi.org/10.1007/s00371-023-03142-z","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"116 7","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135137790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep fusible skinning of animation sequences 动画序列的深度可熔蒙皮
Pub Date : 2023-11-06 DOI: 10.1007/s00371-023-03130-3
Anastasia Moutafidou, Vasileios Toulatzis, Ioannis Fudos
Abstract Animation compression is a key process in replicating and streaming animated 3D models. Linear Blend Skinning (LBS) facilitates the compression of an animated sequence while maintaining the capability of real-time streaming by deriving vertex to proxy bone assignments and per frame bone transformations. We introduce a innovative deep learning approach that learns how to assign vertices to proxy bones with persistent labeling. This is accomplished by learning how to correlate vertex trajectories to bones of fully rigged animated 3D models. Our method uses these pretrained networks on dynamic characteristics (vertex trajectories) of an unseen animation sequence (a sequence of meshes without skeleton or rigging information) to derive an LBS scheme that outperforms most previous competent approaches by offering better approximation of the original animation sequence with fewer bones, therefore offering better compression and smaller bandwidth requirements for streaming. This is substantiated by a thorough comparative performance evaluation using several error metrics, and compression/bandwidth measurements. In this paper, we have also introduced a persistent bone labeling scheme that (i) improves the efficiency of our method in terms of lower error values and better visual outcome and (ii) facilitates the fusion of two (or more) LBS schemes by an innovative algorithm that combines two arbitrary LBS schemes. To demonstrate the usefulness and potential of this fusion process, we have combined the outcome of our deep skinning method with that of Rignet—which is a state-of-the-art method that performs rigging on static meshes—with impressive results.
动画压缩是三维动画模型复制和流化的关键过程。线性混合蒙皮(LBS)简化了动画序列的压缩,同时通过导出顶点到代理骨骼分配和每帧骨骼转换来保持实时流的能力。我们引入了一种创新的深度学习方法,该方法学习如何将顶点分配给具有持久标记的代理骨骼。这是通过学习如何将顶点轨迹关联到完全操纵的动画3D模型的骨骼来完成的。我们的方法使用这些预训练的网络对一个看不见的动画序列(一个没有骨架或索具信息的网格序列)的动态特征(顶点轨迹)进行训练,得出一个LBS方案,通过提供更少骨骼的原始动画序列的更好近似,从而提供更好的压缩和更小的流带宽要求,从而优于大多数以前的有效方法。这是通过使用几个误差度量和压缩/带宽测量的全面比较性能评估来证实的。在本文中,我们还介绍了一种持久的骨骼标记方案,该方案(i)在更低的误差值和更好的视觉结果方面提高了我们方法的效率,(ii)通过结合两种任意LBS方案的创新算法促进了两种(或更多)LBS方案的融合。为了展示这种融合过程的有用性和潜力,我们将我们的深度蒙皮方法的结果与rignet相结合,这是一种最先进的方法,在静态网格上执行索具,结果令人印象深刻。
{"title":"Deep fusible skinning of animation sequences","authors":"Anastasia Moutafidou, Vasileios Toulatzis, Ioannis Fudos","doi":"10.1007/s00371-023-03130-3","DOIUrl":"https://doi.org/10.1007/s00371-023-03130-3","url":null,"abstract":"Abstract Animation compression is a key process in replicating and streaming animated 3D models. Linear Blend Skinning (LBS) facilitates the compression of an animated sequence while maintaining the capability of real-time streaming by deriving vertex to proxy bone assignments and per frame bone transformations. We introduce a innovative deep learning approach that learns how to assign vertices to proxy bones with persistent labeling. This is accomplished by learning how to correlate vertex trajectories to bones of fully rigged animated 3D models. Our method uses these pretrained networks on dynamic characteristics (vertex trajectories) of an unseen animation sequence (a sequence of meshes without skeleton or rigging information) to derive an LBS scheme that outperforms most previous competent approaches by offering better approximation of the original animation sequence with fewer bones, therefore offering better compression and smaller bandwidth requirements for streaming. This is substantiated by a thorough comparative performance evaluation using several error metrics, and compression/bandwidth measurements. In this paper, we have also introduced a persistent bone labeling scheme that (i) improves the efficiency of our method in terms of lower error values and better visual outcome and (ii) facilitates the fusion of two (or more) LBS schemes by an innovative algorithm that combines two arbitrary LBS schemes. To demonstrate the usefulness and potential of this fusion process, we have combined the outcome of our deep skinning method with that of Rignet—which is a state-of-the-art method that performs rigging on static meshes—with impressive results.","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"9 6","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135589669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DeMaskGAN: a de-masking generative adversarial network guided by semantic segmentation DeMaskGAN:一种基于语义分割的反掩码生成对抗网络
Pub Date : 2023-11-06 DOI: 10.1007/s00371-023-03125-0
Zixun Ye, Hongying Zhang, Xue Li, Qin Zhang
{"title":"DeMaskGAN: a de-masking generative adversarial network guided by semantic segmentation","authors":"Zixun Ye, Hongying Zhang, Xue Li, Qin Zhang","doi":"10.1007/s00371-023-03125-0","DOIUrl":"https://doi.org/10.1007/s00371-023-03125-0","url":null,"abstract":"","PeriodicalId":227044,"journal":{"name":"The Visual Computer","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135634936","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
The Visual Computer
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1