While the diversity of foliicolous lichen-forming fungi has been explored in substantial depth, relatively little attention has been paid to their algal symbionts. We studied the unicellular green phycobionts of the lecanoralean lichens Bacidina (Ramalinaceae), Byssoloma, Fellhanera and Tapellaria (Pilocarpaceae) and graphidalean Gyalectidium (Gomphillaceae) from two extratropical foliicolous communities in continental Spain and the Canary Islands. We examined the pyrenoids of algal symbionts within thalli using TEM, and obtained several algal nrSSU and rbcL sequences from whole thalli, and also from cultures isolated from some of these lichens. Pyrenoid structure and molecular sequence data provided support for recognizing Chloroidium (Watanabeales, Trebouxiophyceae) as phycobiont in thalli of Byssoloma subdiscordans and Fellhanera bouteillei (Pilocarpaceae) in both communities. Bacidina apiahica (Ramalinaceae) and Tapellaria epiphylla (Pilocarpaceae) likewise appeared to partner with Chloroidium based on the presence of the same pyrenoid type, although we were able to obtain a phycobiont sequence only from a culture isolate of the latter. These results contrast with those obtained previously from a foliicolous lichen community in southern Florida, which revealed only strains of Heveochlorella (Jaagichlorella) as phycobiont of foliicolous Pilocarpaceae and Gomphillaceae. On the other hand, the pyrenoid we observed in the phycobionts associated with Gyalectidium setiferum and G. minus corresponded to that of Heveochlorella (Jaagichlorella). However, the poor quality of the phycobiont sequence data obtained from G. minus, probably due to the presence of epibiontic algae, could not provide additional perspective on the pyrenoid structure observations. Nonetheless, clear differences in pyrenoid ultrastructure can allow Chloroidium and Heveochlorella phycobionts to be distinguished from each other in TEM. Our results indicate a greater diversity of unicellular green-algal symbionts in foliicolous communities from Spain than previously observed in other geographical areas, and suggest that further studies focused on symbiont pairing in these communities might reveal distinctive and varied patterns of phycobiont preference.
Two new species of the genus Lecidella, one with a North American-maritime Antarctic distribution and one with a so far exclusively southern South American-maritime Antarctic distribution, are described using molecular and morphological tools. Lecidella ayazii is a species growing on soil and also on mosses and has so far been found on the Antarctic Peninsula, as well as in the alpine areas of the La Sal Mountains, Utah, USA and in the Kivalliq Region (Nunavut) in the north of Canada, whereas L. drakensis occurs mainly on siliceous rocks, rarely on mosses, and has been recorded on both sides of the Drake Passage in southern Patagonia and the Antarctic Peninsula. Phylogenetic analysis of the nrITS sequence data shows that both species belong in the L. elaeochroma clade, each forming a highly supported and distinct group. Furthermore, they also differ in morphological and chemical characters from the species described so far in this clade. In addition, five further accessions were recorded from the maritime Antarctic, which were placed in the cosmopolitan and heterogeneous L. stigmatea clade, of which one could be assigned to the bipolar species L. siplei.
Twelve new lichen species are described in the family Arthoniaceae. All are sterile white crusts growing on overhanging trees (and one on living palm fronds) in ten different states in tropical Brazil. In the tropics, sterile crusts so far have been mostly disregarded. They are all characterized by their chemistry and morphology, often including pseudoisidia or soredia, but their phylogenetic relationships have been investigated with sequencing. The following species are described: Arthonia farinosorediata, with shallow soralia and without secondary metabolites; Crypthonia irregularis, with irregular isidia, confluentic acid and sometimes 2ʹ-O-methylperlatolic acid; Crypthonia pseudisidiata, with soft pseudoisidia and without secondary metabolites; Crypthonia stromatica, with sterile stromata and confluentic acid; Cryptophaea constrictopseudisidiata with pseudoisidia, lichexanthone and confluentic acid; Cryptophaea lichexanthopseudisidiata with pseudoisidia and lichexanthone; Cryptophaea lichexanthosorediata with soredia, lichexanthone and divaricatic acid; Cryptothecia lecanorosorediata with soredia and lecanoric acid; Glomerulophoron confluentisorediatum with soredia, confluentic and 2ʹ-O-methylperlatolic acids; Herpothallon psorpseudisidiatum on living palm fronds with a strongly attached thallus, long pseudoisidia and psoromic acid; Myriostigma minisorediatum with soredia and 2ʹ-O-methylperlatolic acid; Pachnolepia longipseudisidiata with long pseudoisidia, and a thallus containing lichexanthone, confluentic acid and 2ʹ-O-methylperlatolic acid.