Background: Mechanical thrombectomy (MT) has become the mainstay of treatment for acute ischemic stroke (AIS) recently. This case-control study aimed to identify the pivotal role of inflammation in the prognosis of AIS patients after MT.
Methods: Altogether, 70 AIS patients who underwent MT were retrospectively recruited for this study. Receiver operating characteristic analysis was performed to demonstrate the sensitivity and specificity of the inflammatory variables for predicting prognosis. A meta-analysis was performed to pool the published results together. Stata software was used for analysis.
Results: There was no differences in pre-MT inflammatory biomarkers between patients who survived and those who died, as well as patients with modified Rankin Scale (mRS) 0-2 and mRS ≥ 3. In contrast, post-MT C-reactive protein (CRP) levels might be a potential parameter to predict death after thrombectomy [area under the curve (AUC), 95%confidence interval (CI), 0.737, 0.587-0.887; p = 0.005; optimal cutoff value = 4.565]. Moreover, post-MT monocyte count might be an appropriate parameter to predict poor long-term prognosis after thrombectomy (AUC, 95%CI, 0.704, 0.575-0.833; p = 0.017; optimal cutoff value = 0.345). A meta-analysis revealed that the pre-MT inflammatory indices, including white blood cell count (weighted mean difference, 95%CI, 1.32, 1.01-1.63), neutrophil count (1.23, 0.95-1.51), monocyte count (0.05, 0.02-0.09), neuthrophil-to-lymphocyte ratio (2.42, 1.98-2.87) and platelet-to-lymphocyte ratio (24.65, 7.99-41.32), were higher in patients with 3-month mRS ≥ 3, and the lymphocyte count (-0.31,-0.43 to -0.18) was lower in this cohort.
Conclusions: Inflammatory indices were significantly associated with the prognosis of patients undergoing MT, especially post-MT CRP and monocyte count, which can predict long-term outcomes.
Objective: To identify recurrent venous thromboembolism (VTE) after discontinuation of anticoagulation in patients with isolated distal deep vein thrombosis based on its anatomic localization (axial or muscular veins).
Methods: Data were sourced from PubMed, Embase, Cochrane Library, Web of Science, and ClinicalTrials.gov databases in the time period up to October 2023. The study followed PRISMA guidelines using a registered protocol (CRD42023443029). Studies reporting recurrent VTE in patients with axial or muscular DVT were included in the analysis.
Results: Five studies with a total of 1,403 participants were evaluated. The results showed a pooled odds ratio of 1.12 (95% confidence interval 0.77-1.63) between axial and muscular DVT. Heterogeneity was low (I2 = 0%, p = 0.91) and there was no significant difference in the rate of recurrent VTE between axial and muscular DVT in each subgroup.
Conclusions: Muscular and axial DVT showed comparable recurrent VTE rates after anticoagulation. However, uncertainties regarding the possibility of recurrence affecting the popliteal vein or resulting in pulmonary embolism following muscular DVT anticoagulation persisted. Randomized trials in patients with isolated distal DVT are still needed to clarify its prognosis for different anatomical thrombus locations.
Background: Hypercoagulability emerges as a central pathological feature and clinical complication in nephrotic syndrome. Increased platelet activation and aggregability are closely related to hypercoagulability in nephrotic syndrome. Monocyte-platelet aggregates (MPAs) have been proposed to represent a robust biomarker of platelet activation. The aim of this study was to investigate levels of the circulating MPAs and MPAs with the different monocyte subsets to evaluate the association of MPAs with hypercoagulability in nephrotic syndrome.
Methods: Thirty-two patients with nephrotic syndrome were enrolled. In addition, thirty-two healthy age and sex matched adult volunteers served as healthy controls. MPAs were identified by CD14 monocytes positive for CD41a platelets. The classical (CD14 + + CD16-, CM), the intermediate (CD14 + + CD16+, IM) and the non-classical (CD14 + CD16++, NCM) monocytes, as well as subset specific MPAs, were measured by flow cytometry.
Results: Patients with nephrotic syndrome showed a higher percentage of circulating MPAs as compared with healthy controls (p < 0.001). The percentages of MPAs with CM, IM, and NCM were higher than those of healthy controls (p = 0.012, p < 0.001 and p < 0.001, respectively). Circulating MPAs showed correlations with hypoalbuminemia (r=-0.85; p < 0.001), hypercholesterolemia (r = 0.54; p < 0.001), fibrinogen (r = 0.70; p < 0.001) and D-dimer (r = 0.37; p = 0.003), but not with hypertriglyceridemia in nephrotic syndrome. The AUC for the prediction of hypercoagulability in nephrotic syndrome using MPAs was 0.79 (95% CI 0.68-0.90, p < 0.001). The sensitivity of MPAs in predicting hypercoagulability was 0.71, and the specificity was 0.78.
Conclusion: Increased MPAs were correlated with hypercoagulability in nephrotic syndrome. MPAs may serve as a potential biomarker for thrombophilic or hypercoagulable state and provide novel insight into the mechanisms of anticoagulation in nephrotic syndrome.
Background: In recent years, extracorporeal membrane oxygenation (ECMO) has been increasingly used in critically ill patients with respiratory or cardiac failure. Heparin is usually used as anticoagulation therapy during ECMO support. However, heparin-induced thrombocytopenia (HIT) in ECMO-supported patients, which results in considerable morbidity and mortality, has not yet been well described. This meta-analysis and systematic review aimed to thoroughly report the incidence of HIT on ECMO, as well as the characteristics and outcomes of HIT patients.
Methods: We searched the PubMed, Embase, Cochrane Library, and Scopus databases for studies investigating HIT in adult patients supported by ECMO. All studies conforming to the inclusion criteria were screened from 1975 to August 2023. Nineteen studies from a total of 1,625 abstracts were selected. The primary outcomes were the incidence of HIT and suspected HIT.
Results: The pooled incidence of HIT in ECMO-supported patients was 4.2% (95% CI: 2.7-5.6; 18 studies). A total of 15.9% (95% CI: 9.0-22.8; 12 studies) of patients on ECMO were suspected of having HIT. Enzyme-linked immunosorbent assay (ELISA) is the most commonly used immunoassay. The median optical density (OD) of the ELISA in HIT-confirmed patients ranged from 1.08 to 2.10. In most studies, the serotonin release assay (SRA) was performed as a HIT-confirming test. According to the subgroup analysis, the pooled incidence of HIT in ECMO patients was 2.7% in studies whose diagnostic mode was functional assays, which is significantly lower than the incidence in studies in which the patients were diagnosed by immunoassay (14.5%). Argatroban was most commonly used as an alternative anticoagulation agent after the withdrawal of heparin. Among confirmed HIT patients, 45.5% (95% CI: 28.8-62.6) experienced thrombotic events, while 50.1% (95% CI: 24.9-75.4) experienced bleeding events. Overall, 46.6% (95% CI: 30.4-63.1) of patients on ECMO with HIT died.
Conclusion: According to our study, the pooled incidence of HIT in ECMO-supported patients is 4.2%, and it contributes to adverse outcomes. Inappropriate diagnostic methods can easily lead to misdiagnosis of HIT. Further research and development of diagnostic algorithms and laboratory assays are warranted.
Background and objective: Tuberculosis disease (TB) and tuberculosis infection (TBI) have been associated with increased risk of cardiovascular disease which may be connected to infection-related haemostatic changes. It is unknown if treatment of Mycobacterium tuberculosis influences haemostasis. Here, we assessed if TB or TBI treatment affects thrombelastography (TEG)-assessed haemostasis.
Methods: Individuals with TB or TBI were included from a TB outpatient clinic in Copenhagen, Denmark. Patients treated with antithrombotic medication or systemic immunosuppressants were excluded. TEG analysis was performed before and after TB/TBI treatment using the TEG®6s analyser to provide data on the reaction time of clot initiation (R) (min), the speed of clot formation (K) (min) and clot build-up (Angle) (°), maximum clot strength (MA) (mm), and clot breakdown/fibrinolysis (LY30) (%). Differences in TEG were assessed using paired t tests.
Results: We included eleven individuals with TB with median [interquartile range] [IQR] age 52 (Liu et al. in Medicine (United States) 95, 2016) years and mean (standard deviation) (SD) body mass index (BMI) 24.7 (6.3) kg/m2 as well as 15 individuals with TBI with median [IQR] age 49 (Wells et al. in Am J Respir Crit Care Med 204:583, 2021) years and BMI 26.0 (3.2) kg/m2. Treatment reduced MA for both TB (64.0 (6.3) vs. 57.9 (5.2) mm, p = 0.016) and TBI (61.3 (4.1) vs. 58.6 (5.0) mm, p = 0.023) whereas R, K, Angle and LY30 were unaffected.
Conclusion: TEG analysis showed that treatments of TB and TBI were associated with reduced MA which may indicate the existence of cardiovascular benefits from therapy.
Trial registration: Registered at ClinicalTrials.gov 05 April 2021 with registration number NCT04830462.
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has had a profound global impact, with millions of confirmed cases and deaths worldwide. While most cases are mild, a subset progresses to severe respiratory complications and death, with factors such as thromboembolism, age, and underlying health conditions increasing the risk. Vascular endothelial damage has been implicated in severe outcomes, but specific biomarkers remain elusive. This study investigated syndecan-1 (SDC-1), a marker of endothelial damage, as a potential prognostic factor for COVID-19, focusing on the Japanese population, which is known for its aging demographics and high prevalence of comorbidities.
Methods: A multicenter retrospective study of COVID-19 patients in Fukushima Prefecture in Japan who were admitted between February 2020 and August 2021 was conducted. SDC-1 levels were measured along with other clinical and laboratory parameters. Outcomes including thrombosis, 28-day survival, and disease severity were assessed, and disease severity was categorized according to established guidelines.
Results: SDC-1 levels were correlated with disease severity. Patients who died from COVID-19 had greater SDC-1 levels than survivors, and the area under the receiver operating characteristic curve (AUC) analysis suggested the potential of the SDC-1 level as a predictor of mortality (AUC 0.714). K‒M analysis also revealed a significant difference in survival based on an SDC-1 cutoff of 10.65 ng/mL.
Discussion: This study suggested that SDC-1 may serve as a valuable biomarker for assessing COVID-19 severity and predicting mortality within 28 days of hospitalization, particularly in the Japanese population. However, further investigations are required to assess longitudinal changes in SDC-1 levels, validate its predictive value for long-term survival, and consider its applicability to new viral variants.
Conclusions: SDC-1 is emerging as a potential biomarker for assessing the severity and life expectancy of COVID-19 in the Japanese population, offering promise for improved risk stratification and patient management in the ongoing fight against the virus.
Background: Platelet is enriched with Circular RNAs (circRNAs), with circFAM13B rank among the 10 most abundant circRNAs in platelets. The aim of the present study was to evaluate the predictive value of platelet-derived circFAM13B for the antiplatelet responsiveness and efficacy of ticagrelor in patients with acute coronary syndrome (ACS).
Methods: Consecutive ACS patients treated with ticagrelor were enrolled, and the antiplatelet responsiveness of 3 days of ticagrelor maintenance treatment was assessed by measuring the adenosine diphosphate (ADP)-induced platelet inhibition rate (ADP%) using thromboelastography. The expression of circFAM13B in the patients' platelets was analyzed by quantitative real-time polymerase chain reaction. The correlation between circFAM13B expression and ticagrelor antiplatelet responsiveness, as well as the independent contribution of circFAM13B to the composite of adverse ischemic events during a follow-up period of at least 12 months was evaluated.
Results: A total of 129 eligible ACS patients treated with ticagrelor were enrolled in the study. A negative correlation was found between the expression of circFAM13B and the ADP% value (r = -0.41, P < 0.001). Patients with ADP% ≥ 76% had a significantly lower level of circFAM13B compared to those with ADP% < 76% (adjusted P = 0.009). Receiver operating characteristic curve analysis demonstrated that combining circFAM13B expression > 1.05 with clinical risk factors could effectively predict the risk of adverse ischemic events (AUC = 0.81, 95% CI: 0.69 to 0.92, P < 0.001). Kaplan-Meier survival analysis showed that patients with circFAM13B > 1.05 had a significantly higher risk of adverse ischemic events compared to those with circFAM13B ≤ 1.05 (P = 0.003). Multivariate logistic hazard analysis identified circFAM13B > 1.05 as an independent risk factor for adverse ischemic events in in ticagrelor-treated ACS patients (adjusted OR: 5.60, 95% CI: 1.69-18.50; P = 0.005).
Conclusions: Platelet-derived circFAM13B could be utilized for predicting the antiplatelet responsiveness and efficacy of ticagrelor in patients with ACS.