Takeshi Wada, Yuji Nakamura, Xin Cao, H. Ohara, Hiroko Izumi‐Nakaseko, Kentaro Ando, Y. Nakazato, A. Sugiyama
Vidarabine has been used for the treatment of patients with local and systemic herpes virus infection; moreover, it was recently reported that it inhibits cardiac type 5 adenylyl cyclase. Furthermore, vidarabine has been shown to suppress atrial fibrillation and improve congestive heart failure in experimental models of mice induced by the isoproterenol infusion. Since information that can explain its experimentally demonstrated efficacy against congestive heart failure and atrial fibrillation remains limited, in this study we precisely assessed cardio-electropharmacological effect using the halothane-anesthetized canine model. Vidarabine was intravenously administrated in three escalating doses of 1, 10, 100 mg/kg over 10 min with a pause between the doses (n = 4). Meanwhile, the vehicle dimethyl sulfoxide in volumes of 0.033, 0.033 and 0.33 mL/kg was intravenously administrated in the same manner as was vidarabine (n = 4). No significant difference was detected in any cardiohemodynamic or electrophysiological variables between the vehicle- and vidarabine-treated groups, which indicates that effective doses of vidarabine adequately inhibiting type 5 adenylyl cyclase did not affect the cardiovascular variables in vivo at all, showing its cardiac safety profile under physiological condition. Thus, the clinical utility of vidarabine might be limited to the pathological situation including congestive heart failure with increased adrenergic tone and/or sympathetic nerve-dependent atrial fibrillation.
{"title":"Antiviral drug vidarabine possessing cardiac type 5 adenylyl cyclase inhibitory property did not affect cardiohemodynamic or electrophysiological variables in the halothane-anesthetized dogs.","authors":"Takeshi Wada, Yuji Nakamura, Xin Cao, H. Ohara, Hiroko Izumi‐Nakaseko, Kentaro Ando, Y. Nakazato, A. Sugiyama","doi":"10.2131/jts.41.115","DOIUrl":"https://doi.org/10.2131/jts.41.115","url":null,"abstract":"Vidarabine has been used for the treatment of patients with local and systemic herpes virus infection; moreover, it was recently reported that it inhibits cardiac type 5 adenylyl cyclase. Furthermore, vidarabine has been shown to suppress atrial fibrillation and improve congestive heart failure in experimental models of mice induced by the isoproterenol infusion. Since information that can explain its experimentally demonstrated efficacy against congestive heart failure and atrial fibrillation remains limited, in this study we precisely assessed cardio-electropharmacological effect using the halothane-anesthetized canine model. Vidarabine was intravenously administrated in three escalating doses of 1, 10, 100 mg/kg over 10 min with a pause between the doses (n = 4). Meanwhile, the vehicle dimethyl sulfoxide in volumes of 0.033, 0.033 and 0.33 mL/kg was intravenously administrated in the same manner as was vidarabine (n = 4). No significant difference was detected in any cardiohemodynamic or electrophysiological variables between the vehicle- and vidarabine-treated groups, which indicates that effective doses of vidarabine adequately inhibiting type 5 adenylyl cyclase did not affect the cardiovascular variables in vivo at all, showing its cardiac safety profile under physiological condition. Thus, the clinical utility of vidarabine might be limited to the pathological situation including congestive heart failure with increased adrenergic tone and/or sympathetic nerve-dependent atrial fibrillation.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130390362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. Yamaguchi, H. Madhyastha, R. Madhyastha, N. Choijookhuu, Y. Hishikawa, Y. Pengjam, Y. Nakajima, M. Maruyama
Arsenic exposure through drinking water is a major public health problem. It causes a number of toxic effects on skin. Arsenic has been reported to inhibit cell proliferation in in vitro conditions. However, reports about the molecular mechanisms are limited. Here, we investigated the mechanism involved in arsenic acid-mediated inhibition of cell proliferation using mouse skin fibroblast cell line. The present study found that 10 ppm arsenic acid inhibited cell proliferation, without any effect on cell death. Arsenic acid induced the generation of reactive oxygen species (ROS), resulting in oxidative stress to DNA. It also activated the mammalian Ste20-like protein kinase 1 (MST1); however the serine/threonine kinase Akt was downregulated. Forkhead box O (FOXO) transcription factors are activated through phosphorylation by MST1 under stress conditions. They are inhibited by phosphorylation by Akt through external and internal stimuli. Activation of FOXOs results in their nuclear localization, followed by an increase in transcriptional activity. Our results showed that arsenic induced the nuclear translocation of FOXO1 and FOXO3a, and altered the cell cycle, with cells accumulating at the G2/M phase. These effects caused cellular senescence. Taken together, our results indicate that arsenic acid inhibited cell proliferation through cellular senescence process regulated by MST1-FOXO signaling pathway.
{"title":"Arsenic acid inhibits proliferation of skin fibroblasts, and increases cellular senescence through ROS mediated MST1-FOXO signaling pathway.","authors":"Y. Yamaguchi, H. Madhyastha, R. Madhyastha, N. Choijookhuu, Y. Hishikawa, Y. Pengjam, Y. Nakajima, M. Maruyama","doi":"10.2131/jts.41.105","DOIUrl":"https://doi.org/10.2131/jts.41.105","url":null,"abstract":"Arsenic exposure through drinking water is a major public health problem. It causes a number of toxic effects on skin. Arsenic has been reported to inhibit cell proliferation in in vitro conditions. However, reports about the molecular mechanisms are limited. Here, we investigated the mechanism involved in arsenic acid-mediated inhibition of cell proliferation using mouse skin fibroblast cell line. The present study found that 10 ppm arsenic acid inhibited cell proliferation, without any effect on cell death. Arsenic acid induced the generation of reactive oxygen species (ROS), resulting in oxidative stress to DNA. It also activated the mammalian Ste20-like protein kinase 1 (MST1); however the serine/threonine kinase Akt was downregulated. Forkhead box O (FOXO) transcription factors are activated through phosphorylation by MST1 under stress conditions. They are inhibited by phosphorylation by Akt through external and internal stimuli. Activation of FOXOs results in their nuclear localization, followed by an increase in transcriptional activity. Our results showed that arsenic induced the nuclear translocation of FOXO1 and FOXO3a, and altered the cell cycle, with cells accumulating at the G2/M phase. These effects caused cellular senescence. Taken together, our results indicate that arsenic acid inhibited cell proliferation through cellular senescence process regulated by MST1-FOXO signaling pathway.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124763333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Doyoung Kwon, Hyun-mi Kim, Eunji Kim, Yeon-Mi Lim, P. Kim, Kyunghee Choi, J. Kwon
Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health.
{"title":"Acute pulmonary toxicity and inflammation induced by combined exposure to didecyldimethylammonium chloride and ethylene glycol in rats.","authors":"Doyoung Kwon, Hyun-mi Kim, Eunji Kim, Yeon-Mi Lim, P. Kim, Kyunghee Choi, J. Kwon","doi":"10.2131/jts.41.17","DOIUrl":"https://doi.org/10.2131/jts.41.17","url":null,"abstract":"Didecyldimethylammonium chloride (DDAC), an antimicrobial agent, has been reported to induce pulmonary toxicity in animal studies. DDAC is frequently used in spray-form household products in combination with ethylene glycol (EG). The purpose of this study was to evaluate the toxic interaction between DDAC and EG in the lung. DDAC at a sub-toxic dose (100 μg/kg body weight) was mixed with a non-toxic dose of EG (100 or 200 μg/kg body weight), and was administrated to rats via intratracheal instillation. Lactate dehydrogenase activity and total protein content in the bronchoalveolar lavage fluid (BALF) were not changed by singly treated DDAC or EG, but significantly enhanced at 1 d after treatment with the mixture, with the effect dependent on the dose of EG. Total cell count in BALF was largely increased and polymorphonuclear leukocytes were predominantly recruited to the lung in rats administrated with the mixture. Inflammatory cytokines, tumor necrosis factor-alpha and interleukin-6 also appeared to be increased by the mixture of DDAC and EG (200 μg/kg body weight) at 1 d post-exposure, which might be associated with the increase in inflammatory cells in lung. BALF protein content and inflammatory cell recruitment in the lung still remained elevated at 7 d after the administration of DDAC with the higher dose of EG. These results suggest that the combination of DDAC and EG can synergistically induce pulmonary cytotoxicity and inflammation, and EG appears to amplify the harmful effects of DDAC on the lung. Therefore pulmonary exposure to these two chemicals commonly found in commercial products can be a potential hazard to human health.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"41 1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130546633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Masashi Takagi, S. Sanoh, Masataka Santoh, Y. Ejiri, Y. Kotake, S. Ohta
Drug-induced phospholipidosis (PLD) is one of the adverse reactions to treatment with cationic amphiphilic drugs. Recently, simple and reliable evaluation methods for PLD have been reported. However, the predictive power of these methods for in vivo PLD induction is insufficient in some cases. To accurately predict PLD, we focused on drug metabolism and used three-dimensional cultures of hepatocytes known as spheroids. Here we used the fluorescent phospholipid dye N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) to detect PLD induction. After 48 hr exposure to 20 µM amiodarone and amitriptyline, PLD inducers, NBD-PE fluorescence in the spheroids was significantly higher than that in the control. In contrast, 1 mM acetaminophen, as a negative control, did not increase fluorescence. Furthermore, the combination of NBD-PE fluorescence and LysoTracker Red fluorescence and the accumulation of intrinsic phospholipids reflected PLD induction in spheroids. To evaluate metabolic activation, we assessed PLD induction by loratadine. NBD-PE fluorescence intensity was significantly increased by 50 µM loratadine treatment. However, the fluorescence was markedly decreased by co-treatment with 500 µM 1-aminobenzotriazole, a broad cytochrome P450 inhibitor. The formation of desloratadine, a metabolite of loratadine, was observed in spheroids after treatment with loratadine alone. These results showed that metabolic activation is the key factor in PLD induction by treatment with loratadine. We demonstrated that rat primary hepatocyte spheroid culture is a useful model for evaluating drug-induced PLD induction mediated by metabolic activation of the drug using the fluorescence probe technique.
{"title":"Detection of metabolic activation leading to drug-induced phospholipidosis in rat hepatocyte spheroids.","authors":"Masashi Takagi, S. Sanoh, Masataka Santoh, Y. Ejiri, Y. Kotake, S. Ohta","doi":"10.2131/jts.41.155","DOIUrl":"https://doi.org/10.2131/jts.41.155","url":null,"abstract":"Drug-induced phospholipidosis (PLD) is one of the adverse reactions to treatment with cationic amphiphilic drugs. Recently, simple and reliable evaluation methods for PLD have been reported. However, the predictive power of these methods for in vivo PLD induction is insufficient in some cases. To accurately predict PLD, we focused on drug metabolism and used three-dimensional cultures of hepatocytes known as spheroids. Here we used the fluorescent phospholipid dye N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE) to detect PLD induction. After 48 hr exposure to 20 µM amiodarone and amitriptyline, PLD inducers, NBD-PE fluorescence in the spheroids was significantly higher than that in the control. In contrast, 1 mM acetaminophen, as a negative control, did not increase fluorescence. Furthermore, the combination of NBD-PE fluorescence and LysoTracker Red fluorescence and the accumulation of intrinsic phospholipids reflected PLD induction in spheroids. To evaluate metabolic activation, we assessed PLD induction by loratadine. NBD-PE fluorescence intensity was significantly increased by 50 µM loratadine treatment. However, the fluorescence was markedly decreased by co-treatment with 500 µM 1-aminobenzotriazole, a broad cytochrome P450 inhibitor. The formation of desloratadine, a metabolite of loratadine, was observed in spheroids after treatment with loratadine alone. These results showed that metabolic activation is the key factor in PLD induction by treatment with loratadine. We demonstrated that rat primary hepatocyte spheroid culture is a useful model for evaluating drug-induced PLD induction mediated by metabolic activation of the drug using the fluorescence probe technique.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130668447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Moayad A. Saad, Kate Cavanaugh, E. Verbueken, Casper Pype, C. Casteleyn, C. V. van Ginneken, S. V. Van Cruchten
The zebrafish (Danio rerio) has been increasingly explored in pharmaceutical research as a promising alternative model for toxicological screens. This necessitates a thorough knowledge on the biotransformation processes for a correct interpretation of pharmacological and toxicological data. Physiologically, cytochrome P450 (CYP) enzymes, specifically CYP families 1-3, play a pivotal role in drug metabolism. And yet, information regarding activity of CYP, its isoforms, and conjugation enzymes in zebrafish is either scarce or conflicting. To account for this discrepancy, the available spatiotemporal, modulation and activity data on zebrafish CYP 1-3 families are reviewed in this paper and compared with human CYP data. The CYP genetic features and synteny are well characterized, as is their expression in different organ systems. Moreover, several substrates metabolized by humans also show metabolism in zebrafish, with other CYP isoforms possibly involved. Altogether, the five CYP1 members, 41 CYP2 members and five CYP3 members in zebrafish show distinct evolutionary and orthological similarities with humans.
{"title":"Xenobiotic metabolism in the zebrafish: a review of the spatiotemporal distribution, modulation and activity of Cytochrome P450 families 1 to 3.","authors":"Moayad A. Saad, Kate Cavanaugh, E. Verbueken, Casper Pype, C. Casteleyn, C. V. van Ginneken, S. V. Van Cruchten","doi":"10.2131/jts.41.1","DOIUrl":"https://doi.org/10.2131/jts.41.1","url":null,"abstract":"The zebrafish (Danio rerio) has been increasingly explored in pharmaceutical research as a promising alternative model for toxicological screens. This necessitates a thorough knowledge on the biotransformation processes for a correct interpretation of pharmacological and toxicological data. Physiologically, cytochrome P450 (CYP) enzymes, specifically CYP families 1-3, play a pivotal role in drug metabolism. And yet, information regarding activity of CYP, its isoforms, and conjugation enzymes in zebrafish is either scarce or conflicting. To account for this discrepancy, the available spatiotemporal, modulation and activity data on zebrafish CYP 1-3 families are reviewed in this paper and compared with human CYP data. The CYP genetic features and synteny are well characterized, as is their expression in different organ systems. Moreover, several substrates metabolized by humans also show metabolism in zebrafish, with other CYP isoforms possibly involved. Altogether, the five CYP1 members, 41 CYP2 members and five CYP3 members in zebrafish show distinct evolutionary and orthological similarities with humans.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131239013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Ishii, S. Kamata, Yoshifumi Hagiya, Y. Abiko, T. Kasahara, Y. Kumagai
The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning.
{"title":"Protective effects of hydrogen sulfide anions against acetaminophen-induced hepatotoxicity in mice.","authors":"I. Ishii, S. Kamata, Yoshifumi Hagiya, Y. Abiko, T. Kasahara, Y. Kumagai","doi":"10.2131/jts.40.837","DOIUrl":"https://doi.org/10.2131/jts.40.837","url":null,"abstract":"The key mechanism for hepatotoxicity resulting from acetaminophen (APAP) overdose is cytochrome P450-dependent formation of N-acetyl-p-benzoquinone imine (NAPQI), a potent electrophilic metabolite that forms protein adducts. The fundamental roles of glutathione in the effective conjugation/clearance of NAPQI have been established, giving a molecular basis for the clinical use of N-acetylcysteine as a sole antidote. Recent evidence from in vitro experiments suggested that sulfide anions (S(2-)) to yield hydrogen sulfide anions (HS(-)) under physiological pH could effectively react with NAPQI. This study evaluated the protective roles of HS(-) against APAP-induced hepatotoxicity in mice. We utilized cystathionine γ-lyase-deficient (Cth(-/-)) mice that are highly sensitive to acetaminophen toxicity. Intraperitoneal injection of acetaminophen (150 mg/kg) into Cth(-/-) mice resulted in highly elevated levels of serum alanine/aspartate aminotransferases and lactate dehydrogenase associated with marked increases in oncotic hepatocytes; all of which were significantly inhibited by intraperitoneal preadministration of sodium hydrosulfide (NaHS). NaHS preadministration significantly suppressed APAP-induced serum malondialdehyde level increases without abrogating APAP-induced rapid depletion of hepatic glutathione. These results suggest that exogenous HS(-) protects hepatocytes by directly scavenging reactive NAPQI rather than by increasing cystine uptake and thereby elevating intracellular glutathione levels, which provides a novel therapeutic approach against acute APAP poisoning.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125944430","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yohei Sakamoto, Midori Yoshida, K. Tamura, Miwa Takahashi, Y. Kodama, Kaoru Inoue
Nuclear receptors play important roles in chemically induced liver hypertrophy in rodents. To clarify the involvement of constitutive androstane receptor (CAR) and other nuclear receptors in mouse liver hypertrophy induced by different doses of piperonyl butoxide (PBO), wild-type and CAR-knockout mice were administered PBO (200, 1,000, or 5,000 ppm) in the basal diet for 1 week. Increased liver weight and diffuse hepatocellular hypertrophy were observed at 5,000 ppm for both genotypes, accompanied by increased Cyp3a11 mRNA and CYP3A protein expression, suggesting that CAR-independent pathway, possibly pregnane X receptor (PXR), plays a major role in the induction of hypertrophy. Moreover, wild-type mice at 5,000 ppm showed enhanced hepatocellular hypertrophy and strong positive staining for CYP2B in the centrilobular area, suggesting the localized contribution of CAR. At 1,000 ppm, only wild-type mice showed liver weight increase and centrilobular hepatocellular hypertrophy concurrent with elevated Cyp2b10 mRNA expression and strong CYP2B staining, indicating that CAR was essential at 1,000 ppm. We concluded that high-dose PBO induced hypertrophy via CAR and another pathway, while lower dose of PBO induced a pathway mediated predominantly by CAR. The dose-responsiveness on liver hypertrophy is important for understanding the involvement of nuclear receptors.
{"title":"Dose-dependent difference of nuclear receptors involved in murine liver hypertrophy by piperonyl butoxide.","authors":"Yohei Sakamoto, Midori Yoshida, K. Tamura, Miwa Takahashi, Y. Kodama, Kaoru Inoue","doi":"10.2131/jts.40.787","DOIUrl":"https://doi.org/10.2131/jts.40.787","url":null,"abstract":"Nuclear receptors play important roles in chemically induced liver hypertrophy in rodents. To clarify the involvement of constitutive androstane receptor (CAR) and other nuclear receptors in mouse liver hypertrophy induced by different doses of piperonyl butoxide (PBO), wild-type and CAR-knockout mice were administered PBO (200, 1,000, or 5,000 ppm) in the basal diet for 1 week. Increased liver weight and diffuse hepatocellular hypertrophy were observed at 5,000 ppm for both genotypes, accompanied by increased Cyp3a11 mRNA and CYP3A protein expression, suggesting that CAR-independent pathway, possibly pregnane X receptor (PXR), plays a major role in the induction of hypertrophy. Moreover, wild-type mice at 5,000 ppm showed enhanced hepatocellular hypertrophy and strong positive staining for CYP2B in the centrilobular area, suggesting the localized contribution of CAR. At 1,000 ppm, only wild-type mice showed liver weight increase and centrilobular hepatocellular hypertrophy concurrent with elevated Cyp2b10 mRNA expression and strong CYP2B staining, indicating that CAR was essential at 1,000 ppm. We concluded that high-dose PBO induced hypertrophy via CAR and another pathway, while lower dose of PBO induced a pathway mediated predominantly by CAR. The dose-responsiveness on liver hypertrophy is important for understanding the involvement of nuclear receptors.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134604849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The embryonic stem cell test (EST) is a promising system to detect embryotoxicity in vitro. Recent studies have pointed out some limitations of the EST and suggest that the applicability domain of the EST and its prediction model have to be better defined. Here, eight substances of known reproductive toxicity were tested in the EST under blind conditions. We applied the prediction model to the data of the EST after classifying the substances according to the published criteria. In addition, a simplified classification of the EST results into two classes as an approach to hazard assessment was compared to the European Union Classification, Labelling and Packaging (CLP) Regulation labels of the substances. With one exception, substances that are labeled as reproductive toxicants according to the CLP Regulation were detected as embryotoxic in the EST while substances without label were found to be non-embryotoxic according to the EST.
{"title":"Classification of reproductive toxicants with diverse mechanisms in the embryonic stem cell test.","authors":"C. Riebeling, Kristin Fischer, A. Luch, A. Seiler","doi":"10.2131/jts.40.809","DOIUrl":"https://doi.org/10.2131/jts.40.809","url":null,"abstract":"The embryonic stem cell test (EST) is a promising system to detect embryotoxicity in vitro. Recent studies have pointed out some limitations of the EST and suggest that the applicability domain of the EST and its prediction model have to be better defined. Here, eight substances of known reproductive toxicity were tested in the EST under blind conditions. We applied the prediction model to the data of the EST after classifying the substances according to the published criteria. In addition, a simplified classification of the EST results into two classes as an approach to hazard assessment was compared to the European Union Classification, Labelling and Packaging (CLP) Regulation labels of the substances. With one exception, substances that are labeled as reproductive toxicants according to the CLP Regulation were detected as embryotoxic in the EST while substances without label were found to be non-embryotoxic according to the EST.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131834657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Highly reactive quinone species produced by photooxidation and/or metabolic activation of mono- or bi-aromatic hydrocarbons modulate cellular homeostasis and electrophilic signal transduction pathways through the covalent modification of proteins. Polycyclic aromatic hydrocarbons, but not mono- or bi-aromatic hydrocarbons, are well recognized as ligands for the aryl hydrocarbon receptor (AhR). However, quinone species produced from mono- and bi-aromatic hydrocarbons could potentially cause AhR activation. To clarify the AhR response to mono- and bi-aromatic hydrocarbon quinones, we studied Cyp1a1 (cytochrome P450 1A1) induction and AhR activation by these quinones. We detected Cyp1a1 induction during treatment with quinones in Hepa1c1c7 cells, but not their parent compounds. Nine of the twelve quinones with covalent binding capability for proteins induced Cyp1a1. Cyp1a1 induction mediated by 1,2-naphthoquinone (1,2-NQ), 1,4-NQ, 1,4-benzoquinone (1,4-BQ) and tert-butyl-1,4-BQ was suppressed by a specific AhR inhibitor and was not observed in c35 cells, which do not have a functional AhR. These quinones stimulated AhR nuclear translocation and interaction with the AhR nuclear translocator. Interestingly, 1,2-NQ covalently modified AhR, which was detected by an immunoprecipitation assay using a specific antibody against 1,2-NQ, resulting in enhancement of xenobiotic responsive element (XRE)-derived luciferase activity and binding of AhR to the Cyp1a1 promoter region. While mono- and bi-aromatic hydrocarbons are generally believed to be poor ligands for AhR and hence unable to induce Cyp1a1, our study suggests that the quinones of these molecules are able to modify AhR and activate the AhR/XRE pathway, thereby inducing Cyp1a1. Since we previously reported that 1,2-NQ and tert-butyl-1,4-BQ also activate NF-E2-related factor 2, it seems likely that some of quinones are bi-functional inducers for phase-I and phase-II reaction of xenobiotics.
{"title":"Covalent binding of quinones activates the Ah receptor in Hepa1c1c7 cells.","authors":"Y. Abiko, A. Puga, Y. Kumagai","doi":"10.2131/jts.40.873","DOIUrl":"https://doi.org/10.2131/jts.40.873","url":null,"abstract":"Highly reactive quinone species produced by photooxidation and/or metabolic activation of mono- or bi-aromatic hydrocarbons modulate cellular homeostasis and electrophilic signal transduction pathways through the covalent modification of proteins. Polycyclic aromatic hydrocarbons, but not mono- or bi-aromatic hydrocarbons, are well recognized as ligands for the aryl hydrocarbon receptor (AhR). However, quinone species produced from mono- and bi-aromatic hydrocarbons could potentially cause AhR activation. To clarify the AhR response to mono- and bi-aromatic hydrocarbon quinones, we studied Cyp1a1 (cytochrome P450 1A1) induction and AhR activation by these quinones. We detected Cyp1a1 induction during treatment with quinones in Hepa1c1c7 cells, but not their parent compounds. Nine of the twelve quinones with covalent binding capability for proteins induced Cyp1a1. Cyp1a1 induction mediated by 1,2-naphthoquinone (1,2-NQ), 1,4-NQ, 1,4-benzoquinone (1,4-BQ) and tert-butyl-1,4-BQ was suppressed by a specific AhR inhibitor and was not observed in c35 cells, which do not have a functional AhR. These quinones stimulated AhR nuclear translocation and interaction with the AhR nuclear translocator. Interestingly, 1,2-NQ covalently modified AhR, which was detected by an immunoprecipitation assay using a specific antibody against 1,2-NQ, resulting in enhancement of xenobiotic responsive element (XRE)-derived luciferase activity and binding of AhR to the Cyp1a1 promoter region. While mono- and bi-aromatic hydrocarbons are generally believed to be poor ligands for AhR and hence unable to induce Cyp1a1, our study suggests that the quinones of these molecules are able to modify AhR and activate the AhR/XRE pathway, thereby inducing Cyp1a1. Since we previously reported that 1,2-NQ and tert-butyl-1,4-BQ also activate NF-E2-related factor 2, it seems likely that some of quinones are bi-functional inducers for phase-I and phase-II reaction of xenobiotics.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"24 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124267631","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. H. Snider, Christina M. Wilhelm, Michael C. Babin, G. Platoff, David T. Yeung
Given the rapid onset of symptoms from intoxication by organophosphate (OP) compounds, a quick-acting, efficacious therapeutic regimen is needed. A primary component of anti-OP therapy is an oxime reactivator to rescue OP-inhibited acetylcholinesterases. Male guinea pigs, clipped of hair, received neat applications of either VR, VX, parathion, or phorate oxon (PHO) at the 85(th) percentile lethal dose, and, beginning with presentation of toxicosis, received the human equivalent dose therapy by intramuscular injection with two additional follow-on treatments at 3-hr intervals. Each therapy consisted of atropine free base at 0.4 mg/kg followed by one of eight candidate oximes. Lethality rates were obtained at 24 hr after VR, VX and PHO challenges, and at 48 hr after challenge with parathion. Lethality rates among symptomatic, oxime-treated groups were compared with that of positive control (OP-challenged and atropine-only treated) guinea pigs composited across the test days. Significant (p ≤ 0.05) protective therapy was afforded by 1,1-methylene bis(4(hydroxyimino- methyl)pyridinium) dimethanesulfonate (MMB4 DMS) against challenges of VR (p ≤ 0.001) and VX (p ≤ 0.05). Lethal effects of VX were also significantly (p ≤ 0.05) mitigated by treatments with oxo-[[1-[[4-(oxoazaniumylmethylidene)pyridin-1-yl]methoxymethyl]pyridin-4-ylidene]methyl]azanium dichloride (obidoxime Cl2) and 1-(((4-(aminocarbonyl) pyridinio)methoxy)methyl)-2,4-bis((hydroxyimino)methyl)pyridinium dimethanesulfonate (HLö-7 DMS). Against parathion, significant protective therapy was afforded by obidoxime dichloride (p ≤ 0.001) and 1,1'-propane-1,3-diylbis{4-[(E)-(hydroxyimino)methyl]pyridinium} dibromide (TMB-4, p ≤ 0.01). None of the oximes evaluated was therapeutically effective against PHO. Across the spectrum of OP chemicals tested, the oximes that offered the highest level of therapy were MMB4 DMS and obidoxime dichloride.
{"title":"Assessing the therapeutic efficacy of oxime therapies against percutaneous organophosphorus pesticide and nerve agent challenges in the Hartley guinea pig.","authors":"T. H. Snider, Christina M. Wilhelm, Michael C. Babin, G. Platoff, David T. Yeung","doi":"10.2131/jts.40.759","DOIUrl":"https://doi.org/10.2131/jts.40.759","url":null,"abstract":"Given the rapid onset of symptoms from intoxication by organophosphate (OP) compounds, a quick-acting, efficacious therapeutic regimen is needed. A primary component of anti-OP therapy is an oxime reactivator to rescue OP-inhibited acetylcholinesterases. Male guinea pigs, clipped of hair, received neat applications of either VR, VX, parathion, or phorate oxon (PHO) at the 85(th) percentile lethal dose, and, beginning with presentation of toxicosis, received the human equivalent dose therapy by intramuscular injection with two additional follow-on treatments at 3-hr intervals. Each therapy consisted of atropine free base at 0.4 mg/kg followed by one of eight candidate oximes. Lethality rates were obtained at 24 hr after VR, VX and PHO challenges, and at 48 hr after challenge with parathion. Lethality rates among symptomatic, oxime-treated groups were compared with that of positive control (OP-challenged and atropine-only treated) guinea pigs composited across the test days. Significant (p ≤ 0.05) protective therapy was afforded by 1,1-methylene bis(4(hydroxyimino- methyl)pyridinium) dimethanesulfonate (MMB4 DMS) against challenges of VR (p ≤ 0.001) and VX (p ≤ 0.05). Lethal effects of VX were also significantly (p ≤ 0.05) mitigated by treatments with oxo-[[1-[[4-(oxoazaniumylmethylidene)pyridin-1-yl]methoxymethyl]pyridin-4-ylidene]methyl]azanium dichloride (obidoxime Cl2) and 1-(((4-(aminocarbonyl) pyridinio)methoxy)methyl)-2,4-bis((hydroxyimino)methyl)pyridinium dimethanesulfonate (HLö-7 DMS). Against parathion, significant protective therapy was afforded by obidoxime dichloride (p ≤ 0.001) and 1,1'-propane-1,3-diylbis{4-[(E)-(hydroxyimino)methyl]pyridinium} dibromide (TMB-4, p ≤ 0.01). None of the oximes evaluated was therapeutically effective against PHO. Across the spectrum of OP chemicals tested, the oximes that offered the highest level of therapy were MMB4 DMS and obidoxime dichloride.","PeriodicalId":231048,"journal":{"name":"The Journal of toxicological sciences","volume":"170 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130620385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}