IV-VI compounds (PbTe, PbSe, PbS, SnTe, GeTe) and their alloys are narrow-gap semiconductors crystallizing in the rock-salt structure and known for very good thermoelectric and infrared optoelectronic properties exploited, e.g. in mid-infrared p-n junction lasers and detectors. Recently, these materials have been recognized as a new class of topological materials - topological crystalline insulators (TCI) [1]. The properties of TCI surface states will be discussed for bulk crystals, crystalline bulk nanocomposites, epitaxial multilayers and quantum dot heterostructures. The TCI surface states were discovered by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) as well as observed in magneto-transport and magneto-optical studies [1,2]. These states constitute a new type of two-dimensional (2D) electron system with unique properties brought about by strong relativistic effects (spin-orbit interaction). Their electron structure exhibits metallic electronic structure with linear Dirac-like dispersion and spin–momentum locking. In Pb1-xSnxTe (x=0-1) and Pb1-xSnxSe (x=0-0.4) substitutional alloys the chemical composition, temperature and hydrostatic pressure induced band inversion is observed between conduction and valence bands. The terminal compounds SnTe and SnSe (in the rock-salt crystal structure) exhibit the inverted band ordering whereas in PbTe and PbSe the band ordering is topologically trivial. Particularly important technological path involves spontaneous formation of nanoscale two-phase coherent crystalline structures, e.g. in PbTe-SnTe-CdTe or PbSe-SnSe-CdSe semiconductor systems. It permits the growth of high crystalline quality composite thermoelectric or optoelectronic nanostrucutres. As the refractive index of IV-VI compounds is very high (typically n≈6) these materials show excellent optical contrast to other semiconductors as demonstrated, e.g. in very efficient Bragg-mirrors composed of just four layers of PbTe and CdTe. By designing the IV-VI topological/trivial heterostructures (superlattices) in the form of 2D multilayers, 1D nanowires or 0D quantum dots one can also exploit topological Dirac interface states in new class of infrared metamaterials [3-5]. [1] P. Dziawa, B.J. Kowalski, K. Dybko et al., Nature Materials 11, 1023 (2012). [2] P. Sessi, D. Di Sante, A. Szczerbakow et al., Science 354, 1269 (2016). [3] M. Szot, K. Dybko, P. Dziawa et al., Crystal Growth & Design 11, 4794 (2011). [4] G. Karczewski, M. Szot, S. Kret et al., Nanotechnology 26, 135601 (2015). [5] J. Sadowski, P. Dziawa, A. Kaleta et al., Nanoscale (2018) doi: 10.1039/c8nr06096g.
IV-VI化合物(PbTe, PbSe, PbS, SnTe, GeTe)及其合金是在岩石盐结构中结晶的窄间隙半导体,以非常好的热电和红外光电特性而闻名,例如在中红外p-n结激光器和探测器中。近年来,这些材料被公认为一类新的拓扑材料——拓扑晶体绝缘子(topological crystalline insulators, TCI)[1]。本文将讨论块体晶体、晶体块体纳米复合材料、外延多层和量子点异质结构中TCI表面态的性质。TCI表面态是通过角分辨光发射光谱(ARPES)和扫描隧道光谱(STS)发现的,也可以在磁输运和磁光研究中观察到[1,2]。这些态构成了一种由强相对论效应(自旋轨道相互作用)带来的具有独特性质的新型二维电子系统。它们的电子结构表现为线性类狄拉克色散和自旋动量锁定的金属电子结构。在Pb1-xSnxTe (x=0-1)和Pb1-xSnxSe (x=0-0.4)取代合金中,在导价带和价带之间观察到化学成分、温度和静水压力引起的能带反转。末端化合物SnTe和SnSe(在岩盐晶体结构中)表现出倒转的能带顺序,而PbTe和PbSe的能带顺序在拓扑结构上是不重要的。特别重要的技术路径涉及自发形成纳米级两相相干晶体结构,例如在PbTe-SnTe-CdTe或PbSe-SnSe-CdSe半导体系统中。它允许生长高晶体质量的复合热电或光电纳米结构。由于IV-VI化合物的折射率非常高(通常为n≈6),这些材料与其他半导体表现出优异的光学对比度,例如在仅由四层PbTe和CdTe组成的非常高效的布拉格反射镜中。通过设计2D多层、1D纳米线或0D量子点形式的IV-VI拓扑/平凡异质结构(超晶格),还可以在新型红外超材料中利用拓扑狄拉克界面态[3-5]。[1]张晓明,张晓明,张晓明,等。生物质化学工程,2009,29 (2).[2]P. Sessi, D. Di Sante, A. Szczerbakow等,《科学》2014,54,1269(2016)。[3]张建军,张建军,张建军,等。晶体生长与设计[j] .光子学报,2011(3)。[4]张晓明,张晓明,张晓明,等。纳米材料的研究进展与进展,2016,(4):1 - 4。[5]张晓明,张晓明,张晓明,等。纳米材料研究进展(2018)doi: 10.1039/c8nr06096g。
{"title":"Topological crystalline insulators (Conference Presentation)","authors":"T. Story","doi":"10.1117/12.2522513","DOIUrl":"https://doi.org/10.1117/12.2522513","url":null,"abstract":"IV-VI compounds (PbTe, PbSe, PbS, SnTe, GeTe) and their alloys are narrow-gap semiconductors crystallizing in the rock-salt structure and known for very good thermoelectric and infrared optoelectronic properties exploited, e.g. in mid-infrared p-n junction lasers and detectors. Recently, these materials have been recognized as a new class of topological materials - topological crystalline insulators (TCI) [1]. The properties of TCI surface states will be discussed for bulk crystals, crystalline bulk nanocomposites, epitaxial multilayers and quantum dot heterostructures. The TCI surface states were discovered by angle-resolved photoemission spectroscopy (ARPES) and scanning tunneling spectroscopy (STS) as well as observed in magneto-transport and magneto-optical studies [1,2]. These states constitute a new type of two-dimensional (2D) electron system with unique properties brought about by strong relativistic effects (spin-orbit interaction). Their electron structure exhibits metallic electronic structure with linear Dirac-like dispersion and spin–momentum locking. In Pb1-xSnxTe (x=0-1) and Pb1-xSnxSe (x=0-0.4) substitutional alloys the chemical composition, temperature and hydrostatic pressure induced band inversion is observed between conduction and valence bands. The terminal compounds SnTe and SnSe (in the rock-salt crystal structure) exhibit the inverted band ordering whereas in PbTe and PbSe the band ordering is topologically trivial. Particularly important technological path involves spontaneous formation of nanoscale two-phase coherent crystalline structures, e.g. in PbTe-SnTe-CdTe or PbSe-SnSe-CdSe semiconductor systems. It permits the growth of high crystalline quality composite thermoelectric or optoelectronic nanostrucutres. As the refractive index of IV-VI compounds is very high (typically n≈6) these materials show excellent optical contrast to other semiconductors as demonstrated, e.g. in very efficient Bragg-mirrors composed of just four layers of PbTe and CdTe. By designing the IV-VI topological/trivial heterostructures (superlattices) in the form of 2D multilayers, 1D nanowires or 0D quantum dots one can also exploit topological Dirac interface states in new class of infrared metamaterials [3-5].\u0000\u0000[1] P. Dziawa, B.J. Kowalski, K. Dybko et al., Nature Materials 11, 1023 (2012).\u0000[2] P. Sessi, D. Di Sante, A. Szczerbakow et al., Science 354, 1269 (2016). \u0000[3] M. Szot, K. Dybko, P. Dziawa et al., Crystal Growth & Design 11, 4794 (2011). \u0000[4] G. Karczewski, M. Szot, S. Kret et al., Nanotechnology 26, 135601 (2015). \u0000[5] J. Sadowski, P. Dziawa, A. Kaleta et al., Nanoscale (2018) doi: 10.1039/c8nr06096g.","PeriodicalId":231900,"journal":{"name":"Metamaterials XII","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130567210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jakub Szlachetka, A. Vetter, K. Słowik, C. Rockstuhl, P. Kolenderski
{"title":"Nanostructural beam splitter (Conference Presentation)","authors":"Jakub Szlachetka, A. Vetter, K. Słowik, C. Rockstuhl, P. Kolenderski","doi":"10.1117/12.2520858","DOIUrl":"https://doi.org/10.1117/12.2520858","url":null,"abstract":"","PeriodicalId":231900,"journal":{"name":"Metamaterials XII","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121952626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical and numerical analysis of nonlocal and quantum nanoplasmonic resonance effects (Conference Presentation)","authors":"M. Burda, P. Kwiecien, I. Richter","doi":"10.1117/12.2521222","DOIUrl":"https://doi.org/10.1117/12.2521222","url":null,"abstract":"","PeriodicalId":231900,"journal":{"name":"Metamaterials XII","volume":"191 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121800093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
J. Sitnicka, M. Konczykowski, A. Reszka, P. Skupiński, K. Grasza, J. Borysiuk, K. Sobczak, A. Avdonin, I. Fedorchenko, S. F. Marenkin, M. Kamińska, A. Wołoś
{"title":"Magnetic and electrical properties of 3D topological insulator Bi2Te3 doped with Mn\u0000 (Conference Presentation)","authors":"J. Sitnicka, M. Konczykowski, A. Reszka, P. Skupiński, K. Grasza, J. Borysiuk, K. Sobczak, A. Avdonin, I. Fedorchenko, S. F. Marenkin, M. Kamińska, A. Wołoś","doi":"10.1117/12.2523853","DOIUrl":"https://doi.org/10.1117/12.2523853","url":null,"abstract":"","PeriodicalId":231900,"journal":{"name":"Metamaterials XII","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132708576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}