Transcription through chromatin by different RNA polymerases produces different biological outcomes and is accompanied by either nucleosome survival at the original location (Pol II-type mechanism) or backward nucleosome translocation along DNA (Pol III-type mechanism). It has been proposed that differences in the structure of the key intermediates formed during transcription dictate the fate of the nucleosomes. To evaluate this possibility, structure of the key intermediate formed during transcription by Pol III-type mechanism was studied by DNase I footprinting and molecular modeling. The Pol III-type mechanism is characterized by less efficient formation of the key intermediate required for nucleosome survival (Ø-loop, Pol II-type mechanism), most likely due to steric interference between the RNA polymerase and DNA in the Ø-loop. The data suggest that the lower efficiency of Ø-loop formation induces formation of a lower nucleosomal barrier and nucleosome translocation during transcription by Pol III-type mechanism.