首页 > 最新文献

Trends in pharmacological sciences最新文献

英文 中文
Shining light on parvalbumin interneuron plasticity. 照亮小白蛋白中间神经元的可塑性。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-08-01 Epub Date: 2025-07-05 DOI: 10.1016/j.tips.2025.06.006
Marina P Hommersom, Dirk Schubert, Nael Nadif Kasri

Neuronal networks rely on a balance between the activity of excitatory and inhibitory neurons, each having distinct roles in regulating the flow of activity across brain circuits and signal processing. Recent work by Selten et al. uncovers how parvalbumin (PV)-expressing interneurons adjust their inhibitory inputs in response to activity changes, revealing a neuropeptide-based mechanism.

神经元网络依赖于兴奋性神经元和抑制性神经元活动之间的平衡,每一种神经元在调节大脑回路和信号处理的活动流方面都有不同的作用。Selten等人最近的研究揭示了表达小白蛋白(PV)的中间神经元如何根据活性变化调整其抑制输入,揭示了一种基于神经肽的机制。
{"title":"Shining light on parvalbumin interneuron plasticity.","authors":"Marina P Hommersom, Dirk Schubert, Nael Nadif Kasri","doi":"10.1016/j.tips.2025.06.006","DOIUrl":"10.1016/j.tips.2025.06.006","url":null,"abstract":"<p><p>Neuronal networks rely on a balance between the activity of excitatory and inhibitory neurons, each having distinct roles in regulating the flow of activity across brain circuits and signal processing. Recent work by Selten et al. uncovers how parvalbumin (PV)-expressing interneurons adjust their inhibitory inputs in response to activity changes, revealing a neuropeptide-based mechanism.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"697-699"},"PeriodicalIF":19.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144576337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting plasma membrane cholesterol as a novel anticancer therapy. 靶向质膜胆固醇作为一种新的抗癌疗法。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-08-01 Epub Date: 2025-06-19 DOI: 10.1016/j.tips.2025.06.001
Alfredo Erazo-Oliveras, Mónica Muñoz-Vega, Robert S Chapkin

An effective therapeutic strategy to treat oncogenic Wnt signaling in the context of colorectal cancer (CRC) remains elusive. A new study from Cho and colleagues describes a novel mechanistic link between the loss of canonical adenomatous polyposis coli (APC) function, membrane cholesterol, and an innovative drug target to specifically suppress the cholesterol-Dvl-β-catenin signaling axis.

在结直肠癌(CRC)的背景下,治疗致癌Wnt信号的有效治疗策略仍然难以捉摸。Cho及其同事的一项新研究描述了典型腺瘤性息肉病(APC)功能丧失、膜胆固醇和特异性抑制胆固醇- dvl -β-catenin信号轴的创新药物靶点之间的一种新的机制联系。
{"title":"Targeting plasma membrane cholesterol as a novel anticancer therapy.","authors":"Alfredo Erazo-Oliveras, Mónica Muñoz-Vega, Robert S Chapkin","doi":"10.1016/j.tips.2025.06.001","DOIUrl":"10.1016/j.tips.2025.06.001","url":null,"abstract":"<p><p>An effective therapeutic strategy to treat oncogenic Wnt signaling in the context of colorectal cancer (CRC) remains elusive. A new study from Cho and colleagues describes a novel mechanistic link between the loss of canonical adenomatous polyposis coli (APC) function, membrane cholesterol, and an innovative drug target to specifically suppress the cholesterol-Dvl-β-catenin signaling axis.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"700-702"},"PeriodicalIF":19.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ion channels as therapeutic targets in osteoarthritis. 离子通道作为骨关节炎的治疗靶点。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-08-01 Epub Date: 2025-07-10 DOI: 10.1016/j.tips.2025.06.003
Renpeng Zhou, Wei Hu, Stephen G Waxman, Chuan-Ju Liu

Osteoarthritis (OA) is a leading cause of disability worldwide and is characterized by cartilage loss, inflammation, and pain. Despite advances, effective disease-modifying treatments are lacking. Emerging evidence highlights ion channels as key regulators of OA that affect chondrocyte survival, mechanotransduction, inflammation, and nociception. This review discusses ion channel families - including sodium, potassium, TRP, Piezo, acid-sensing, and chloride channels, as well as ligand-gated receptors - and their roles in OA progression. We explore preclinical and clinical advances in ion channel-targeted therapies, such as small-molecule inhibitors, biologics, and gene therapies, as well as repurposing of existing drugs for symptom relief and disease modification. Challenges in selective targeting, pharmacological and drug delivery strategies, and patient stratification are also addressed. Continued research on ion channel biology is essential for developing targeted OA therapies to enable precision medicine via site-specific strategies that minimize systemic side effects.

骨关节炎(OA)是世界范围内致残的主要原因,其特征是软骨丢失、炎症和疼痛。尽管取得了进步,但缺乏有效的疾病改善治疗方法。新出现的证据强调离子通道是骨性关节炎的关键调节因子,影响软骨细胞存活、机械转导、炎症和伤害感受。这篇综述讨论了离子通道家族-包括钠、钾、色氨酸、压电、酸感应和氯离子通道,以及配体门控受体-及其在OA进展中的作用。我们探索离子通道靶向治疗的临床前和临床进展,如小分子抑制剂、生物制剂和基因治疗,以及现有药物用于症状缓解和疾病改变的再利用。在选择性靶向,药理学和药物递送策略和患者分层的挑战也被解决。离子通道生物学的持续研究对于开发靶向OA疗法至关重要,从而通过部位特异性策略实现精准医疗,最大限度地减少全身副作用。
{"title":"Ion channels as therapeutic targets in osteoarthritis.","authors":"Renpeng Zhou, Wei Hu, Stephen G Waxman, Chuan-Ju Liu","doi":"10.1016/j.tips.2025.06.003","DOIUrl":"10.1016/j.tips.2025.06.003","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a leading cause of disability worldwide and is characterized by cartilage loss, inflammation, and pain. Despite advances, effective disease-modifying treatments are lacking. Emerging evidence highlights ion channels as key regulators of OA that affect chondrocyte survival, mechanotransduction, inflammation, and nociception. This review discusses ion channel families - including sodium, potassium, TRP, Piezo, acid-sensing, and chloride channels, as well as ligand-gated receptors - and their roles in OA progression. We explore preclinical and clinical advances in ion channel-targeted therapies, such as small-molecule inhibitors, biologics, and gene therapies, as well as repurposing of existing drugs for symptom relief and disease modification. Challenges in selective targeting, pharmacological and drug delivery strategies, and patient stratification are also addressed. Continued research on ion channel biology is essential for developing targeted OA therapies to enable precision medicine via site-specific strategies that minimize systemic side effects.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"792-813"},"PeriodicalIF":19.9,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144620731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PSA inhibitors for contraception: insights from prostate cancer. PSA抑制剂用于避孕:来自前列腺癌的见解。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-06-04 DOI: 10.1016/j.tips.2025.05.005
Wipawee Winuthayanon

Despite the availability of effective hormonal contraceptive methods, nearly half of pregnancies worldwide remain unintended, highlighting the urgent need for innovative, nonhormonal options. Prostate-specific antigen (PSA) is a biomarker for prostate cancer and is well established for its role in liquefying semen by hydrolyzing gel-forming proteins. Liquefaction is essential for sperm motility and fertilization, making PSA inhibition a prime candidate for novel contraceptive strategies. Advances in prostate cancer research have led to the development of PSA inhibitors for cancer therapeutic purposes, including drugs that suppress PSA activity or selectively kill PSA-expressing cells. PSA presents a unique target as it is produced in men and acts in women, making it a promising contraceptive strategy for both sexes. This opinion explores the potential adaptation of existing PSA inhibitors from the oncology field for contraceptive applications. It also highlights emerging strategies to identify effective PSA-targeted contraceptive candidates, opening new avenues for next-generation nonhormonal contraception for men and women.

尽管有有效的激素避孕方法,但全世界近一半的怀孕仍然是意外的,这突出表明迫切需要创新的非激素避孕方法。前列腺特异性抗原(PSA)是前列腺癌的生物标志物,它通过水解凝胶形成蛋白来液化精液。液化是必不可少的精子运动和受精,使PSA抑制的主要候选人的新避孕策略。前列腺癌研究的进展导致了用于癌症治疗目的的PSA抑制剂的开发,包括抑制PSA活性或选择性杀死表达PSA细胞的药物。PSA呈现出一个独特的目标,因为它在男性中产生,在女性中起作用,使其成为一种有希望的两性避孕策略。这一观点探讨了肿瘤领域现有的PSA抑制剂在避孕应用中的潜在适应性。它还强调了确定有效的psa靶向避孕候选药物的新兴战略,为下一代男性和女性非激素避孕开辟了新的途径。
{"title":"PSA inhibitors for contraception: insights from prostate cancer.","authors":"Wipawee Winuthayanon","doi":"10.1016/j.tips.2025.05.005","DOIUrl":"10.1016/j.tips.2025.05.005","url":null,"abstract":"<p><p>Despite the availability of effective hormonal contraceptive methods, nearly half of pregnancies worldwide remain unintended, highlighting the urgent need for innovative, nonhormonal options. Prostate-specific antigen (PSA) is a biomarker for prostate cancer and is well established for its role in liquefying semen by hydrolyzing gel-forming proteins. Liquefaction is essential for sperm motility and fertilization, making PSA inhibition a prime candidate for novel contraceptive strategies. Advances in prostate cancer research have led to the development of PSA inhibitors for cancer therapeutic purposes, including drugs that suppress PSA activity or selectively kill PSA-expressing cells. PSA presents a unique target as it is produced in men and acts in women, making it a promising contraceptive strategy for both sexes. This opinion explores the potential adaptation of existing PSA inhibitors from the oncology field for contraceptive applications. It also highlights emerging strategies to identify effective PSA-targeted contraceptive candidates, opening new avenues for next-generation nonhormonal contraception for men and women.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"599-609"},"PeriodicalIF":19.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12227279/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144235331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging approaches for antagonizing the aryl hydrocarbon receptor. 拮抗芳烃受体的新方法。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-06-05 DOI: 10.1016/j.tips.2025.05.003
Zdeněk Dvořák, Sridhar Mani, Jan Vondráček

Antagonizing the aryl hydrocarbon receptor (AhR) is a highly pertinent pharmacotherapeutic strategy. To overcome the drawbacks of existing AhR antagonists, novel molecules that can selectively target canonical and noncanonical AhR pathways are urgently needed. Recent reports on the structures and functions of cytosolic and nuclear AhR-protein complexes have allowed for understanding structural determinants for intrinsic activity and functional selectivity of AhR ligands. This new information regarding AhR surface interactions has opened new avenues for the development of novel AhR antagonists. Achievable strategies include the negative allosteric modulation of AhR and the disruption of AhR-protein and AhR-DNA interfaces using peptidomimetics or small molecules. Here, we discuss such novel approaches that may lead to new AhR-targeted therapeutics.

拮抗芳烃受体(AhR)是一种高度相关的药物治疗策略。为了克服现有AhR拮抗剂的缺点,迫切需要能够选择性靶向典型和非典型AhR通路的新型分子。最近关于细胞质和核AhR蛋白复合物的结构和功能的报道使我们能够理解AhR配体的内在活性和功能选择性的结构决定因素。这一关于AhR表面相互作用的新信息为开发新的AhR拮抗剂开辟了新的途径。可实现的策略包括AhR的负变构调节和使用肽模拟物或小分子破坏AhR蛋白和AhR- dna界面。在这里,我们讨论这些可能导致新的ahr靶向治疗的新方法。
{"title":"Emerging approaches for antagonizing the aryl hydrocarbon receptor.","authors":"Zdeněk Dvořák, Sridhar Mani, Jan Vondráček","doi":"10.1016/j.tips.2025.05.003","DOIUrl":"10.1016/j.tips.2025.05.003","url":null,"abstract":"<p><p>Antagonizing the aryl hydrocarbon receptor (AhR) is a highly pertinent pharmacotherapeutic strategy. To overcome the drawbacks of existing AhR antagonists, novel molecules that can selectively target canonical and noncanonical AhR pathways are urgently needed. Recent reports on the structures and functions of cytosolic and nuclear AhR-protein complexes have allowed for understanding structural determinants for intrinsic activity and functional selectivity of AhR ligands. This new information regarding AhR surface interactions has opened new avenues for the development of novel AhR antagonists. Achievable strategies include the negative allosteric modulation of AhR and the disruption of AhR-protein and AhR-DNA interfaces using peptidomimetics or small molecules. Here, we discuss such novel approaches that may lead to new AhR-targeted therapeutics.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"629-637"},"PeriodicalIF":19.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144249713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Protein acylations in cancer immunity: effects and therapeutic opportunities. 蛋白质酰化在癌症免疫中的作用和治疗机会。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-06-20 DOI: 10.1016/j.tips.2025.05.011
Jia-Cheng Lai, Yi-Ting Jiang, Shougeng Liu, Simeng Wang, Wei Cui, Lihui Wang

Acylations are conserved and dynamic modifications that control various biological processes, including gene transcription and protein biology, and have been tied to diseases, such as cancers. Due to their reversible characteristic, acylations exhibit great therapeutic potential through targeting of their regulatory enzymes and proteins. Recent studies have improved our understanding of the close interplay between acylations and the tumor immune microenvironment (TIME), showing the potential to improve antitumor immune responses via acylation manipulation. Herein, we review the effects of acylations, including acetylation, lactylation, palmitoylation, and some less well-known acylations on cancer immunity, and corresponding therapeutic opportunities. Specifically, we bring into focus diverse roles of different acylation-related enzymes, metabolites, or substrates to provide insights into targeting acylations to increase antitumor immunity and generate broader research enthusiasm.

酰基化是一种保守的动态修饰,控制着各种生物过程,包括基因转录和蛋白质生物学,并与癌症等疾病有关。由于其可逆特性,酰基化通过靶向其调节酶和蛋白质显示出巨大的治疗潜力。最近的研究提高了我们对酰化与肿瘤免疫微环境(TIME)之间密切相互作用的理解,显示了通过酰化操作改善抗肿瘤免疫反应的潜力。在此,我们回顾了酰基化,包括乙酰化,乳酸化,棕榈酰化和一些不太为人所知的酰基化对癌症免疫的影响,以及相应的治疗机会。具体来说,我们关注不同酰基化相关酶、代谢物或底物的不同作用,为靶向酰基化提供见解,以增加抗肿瘤免疫,并产生更广泛的研究热情。
{"title":"Protein acylations in cancer immunity: effects and therapeutic opportunities.","authors":"Jia-Cheng Lai, Yi-Ting Jiang, Shougeng Liu, Simeng Wang, Wei Cui, Lihui Wang","doi":"10.1016/j.tips.2025.05.011","DOIUrl":"10.1016/j.tips.2025.05.011","url":null,"abstract":"<p><p>Acylations are conserved and dynamic modifications that control various biological processes, including gene transcription and protein biology, and have been tied to diseases, such as cancers. Due to their reversible characteristic, acylations exhibit great therapeutic potential through targeting of their regulatory enzymes and proteins. Recent studies have improved our understanding of the close interplay between acylations and the tumor immune microenvironment (TIME), showing the potential to improve antitumor immune responses via acylation manipulation. Herein, we review the effects of acylations, including acetylation, lactylation, palmitoylation, and some less well-known acylations on cancer immunity, and corresponding therapeutic opportunities. Specifically, we bring into focus diverse roles of different acylation-related enzymes, metabolites, or substrates to provide insights into targeting acylations to increase antitumor immunity and generate broader research enthusiasm.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"653-673"},"PeriodicalIF":19.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144337035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bright sorting yields drug-like anti-amyloid antibodies. 明亮分选产生类似药物的抗淀粉样抗体。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-06-16 DOI: 10.1016/j.tips.2025.05.013
Bingqian Li, Pietro Sormanni

Conformation-specific antibodies represent powerful tools for targeting pathogenic amyloid aggregates. However, the discovery of aggregate-selective antibodies with drug-like developability properties has been slow, inefficient, and difficult to generalise across different amyloid targets. The Tessier lab has developed a yeast-display screening pipeline that enables conformation-specific antibody discovery against diverse aggregated proteins.

构象特异性抗体是靶向致病性淀粉样蛋白聚集体的有力工具。然而,具有药物样可开发特性的聚集体选择性抗体的发现一直是缓慢、低效的,并且难以推广到不同的淀粉样蛋白靶点。Tessier实验室已经开发了一种酵母显示筛选管道,可以发现针对不同聚集蛋白的构象特异性抗体。
{"title":"Bright sorting yields drug-like anti-amyloid antibodies.","authors":"Bingqian Li, Pietro Sormanni","doi":"10.1016/j.tips.2025.05.013","DOIUrl":"10.1016/j.tips.2025.05.013","url":null,"abstract":"<p><p>Conformation-specific antibodies represent powerful tools for targeting pathogenic amyloid aggregates. However, the discovery of aggregate-selective antibodies with drug-like developability properties has been slow, inefficient, and difficult to generalise across different amyloid targets. The Tessier lab has developed a yeast-display screening pipeline that enables conformation-specific antibody discovery against diverse aggregated proteins.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"587-589"},"PeriodicalIF":19.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144317968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
At last: the mitochondrial pyruvate carrier structure revealed! 最终:线粒体丙酮酸载体结构揭示!
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-06-10 DOI: 10.1016/j.tips.2025.05.010
Brian N Finck, Christy M Hadfield, Kyle S McCommis

Mitochondrial pyruvate carrier (MPC) inhibitors have shown promise as therapeutics for treating several chronic diseases. However, the structure of MPC and the molecular mechanisms by which it interacts with inhibitors have remained unclear, impeding rational drug design. Multiple groups have now independently resolved the structure of the MPC heterodimer.

线粒体丙酮酸载体(MPC)抑制剂已显示出治疗多种慢性疾病的前景。然而,MPC的结构及其与抑制剂相互作用的分子机制尚不清楚,阻碍了合理的药物设计。多个研究小组现在已经独立地解析了MPC异二聚体的结构。
{"title":"At last: the mitochondrial pyruvate carrier structure revealed!","authors":"Brian N Finck, Christy M Hadfield, Kyle S McCommis","doi":"10.1016/j.tips.2025.05.010","DOIUrl":"10.1016/j.tips.2025.05.010","url":null,"abstract":"<p><p>Mitochondrial pyruvate carrier (MPC) inhibitors have shown promise as therapeutics for treating several chronic diseases. However, the structure of MPC and the molecular mechanisms by which it interacts with inhibitors have remained unclear, impeding rational drug design. Multiple groups have now independently resolved the structure of the MPC heterodimer.</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"596-598"},"PeriodicalIF":19.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144276003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Limiting TDP-43 aggregation by induced recruitment to PML-NB. 通过诱导募集PML-NB限制TDP-43聚集。
IF 19.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-06-05 DOI: 10.1016/j.tips.2025.05.012
Chien-Han Kao, Ruey-Hwa Chen

TAR DNA binding protein 43 kD (TDP-43) aggregation is associated with several neurodegenerative diseases and limiting TDP-43 aggregates could offer therapeutic benefit. Recently, Wagner et al. utilized the induced proximity to PML for enhancing TDP-43 solubility under stress. Mechanistically, this strategy triggers a SUMOylation-ubiquitylation cascade on TDP-43 and the compartmentalization of TDP-43 to the promyelocytic leukemia-nuclear bodies (PML-NBs).

TAR DNA结合蛋白43 kD (TDP-43)聚集与几种神经退行性疾病有关,限制TDP-43聚集可提供治疗益处。最近,Wagner等人利用诱导接近PML来提高TDP-43在应激下的溶解度。从机制上讲,这一策略触发了TDP-43上的summoyl化-泛素化级联反应,并将TDP-43划分为早幼粒细胞白血病核小体(pml - nb)。
{"title":"Limiting TDP-43 aggregation by induced recruitment to PML-NB.","authors":"Chien-Han Kao, Ruey-Hwa Chen","doi":"10.1016/j.tips.2025.05.012","DOIUrl":"10.1016/j.tips.2025.05.012","url":null,"abstract":"<p><p>TAR DNA binding protein 43 kD (TDP-43) aggregation is associated with several neurodegenerative diseases and limiting TDP-43 aggregates could offer therapeutic benefit. Recently, Wagner et al. utilized the induced proximity to PML for enhancing TDP-43 solubility under stress. Mechanistically, this strategy triggers a SUMOylation-ubiquitylation cascade on TDP-43 and the compartmentalization of TDP-43 to the promyelocytic leukemia-nuclear bodies (PML-NBs).</p>","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"593-595"},"PeriodicalIF":19.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144249714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Givinostat: a histone deacetylase inhibitor for Duchenne muscular dystrophy. 吉维司他:一种治疗杜氏肌营养不良的组蛋白去乙酰化酶抑制剂。
IF 13.9 1区 医学 Q1 PHARMACOLOGY & PHARMACY Pub Date : 2025-07-01 Epub Date: 2025-05-15 DOI: 10.1016/j.tips.2025.04.006
Melis Sucuoglu, Serkan Kir
{"title":"Givinostat: a histone deacetylase inhibitor for Duchenne muscular dystrophy.","authors":"Melis Sucuoglu, Serkan Kir","doi":"10.1016/j.tips.2025.04.006","DOIUrl":"10.1016/j.tips.2025.04.006","url":null,"abstract":"","PeriodicalId":23250,"journal":{"name":"Trends in pharmacological sciences","volume":" ","pages":"692-693"},"PeriodicalIF":13.9,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144086112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in pharmacological sciences
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1