首页 > 最新文献

Transactions of The Japanese Society for Artificial Intelligence最新文献

英文 中文
Empirical Analysis of Methods for Evaluating Faithfulness of Explanations by Feature Attribution 特征归因解释可信度评价方法的实证分析
Pub Date : 2023-11-01 DOI: 10.1527/tjsai.38-6_c-n22
Yuya Asazuma, Kazuaki Hanawa, Kentaro Inui
Many high-performance machine learning models in the real world exhibit the black box problem. This issue is widely recognized as needing output reliability and model transparency. XAI (Explainable AI) represents a research field that addresses this issue. Within XAI, feature attribution methods, which clarify the importance of features irrespective of the task or model type, have become a central focus. Evaluating their efficacy based on empirical evidence is essential when proposing new methods. However, extensive debate exists regarding the properties that importance should be possessed, and a consensus on specific evaluation methods remains elusive. Given this context, many existing studies adopt their evaluation techniques, leading to fragmented discussions. This study aims to ”evaluate the evaluation methods,” focusing mainly on the faithfulness metric, deemed especially significant in evaluation criteria. We conducted empirical experiments related to existing evaluation techniques. The experiments approached the topic from two angles: correlation-based comparative evaluations and property verification using random sequences. In the former experiment, we investigated the correlation between faithfulness evaluation tests using numerous models and feature attribution methods. As a result, we found that very few test combinations exhibited high correlation, and many combinations showed low or no correlation. In the latter experiment, we observed that the measured faithfulness varied depending on the model and dataset by using random sequences instead of feature attribution methods to verify the properties of the faithfulness tests.
现实世界中的许多高性能机器学习模型都存在黑箱问题。这个问题被广泛认为需要输出可靠性和模型透明度。XAI(可解释AI)代表了解决这一问题的研究领域。在XAI中,特征归因方法已经成为焦点,它澄清了与任务或模型类型无关的特征的重要性。在提出新方法时,基于经验证据评估其有效性至关重要。然而,关于重要性应该拥有的属性存在着广泛的争论,在具体的评估方法上仍然难以达成共识。在这种背景下,许多现有的研究采用了他们的评估技术,导致了支离破碎的讨论。本研究旨在“评估评估方法”,主要关注在评估标准中被认为特别重要的忠实度指标。我们进行了与现有评价技术相关的实证实验。实验从基于相关性的比较评价和基于随机序列的性质验证两个角度进行了探讨。在前一个实验中,我们研究了使用多种模型和特征归因方法的忠诚评估测试之间的相关性。结果,我们发现很少的测试组合表现出高相关性,而许多组合表现出低相关性或没有相关性。在后一个实验中,我们观察到测量的信度根据模型和数据集而变化,通过使用随机序列而不是特征归因方法来验证信度测试的属性。
{"title":"Empirical Analysis of Methods for Evaluating Faithfulness of Explanations by Feature Attribution","authors":"Yuya Asazuma, Kazuaki Hanawa, Kentaro Inui","doi":"10.1527/tjsai.38-6_c-n22","DOIUrl":"https://doi.org/10.1527/tjsai.38-6_c-n22","url":null,"abstract":"Many high-performance machine learning models in the real world exhibit the black box problem. This issue is widely recognized as needing output reliability and model transparency. XAI (Explainable AI) represents a research field that addresses this issue. Within XAI, feature attribution methods, which clarify the importance of features irrespective of the task or model type, have become a central focus. Evaluating their efficacy based on empirical evidence is essential when proposing new methods. However, extensive debate exists regarding the properties that importance should be possessed, and a consensus on specific evaluation methods remains elusive. Given this context, many existing studies adopt their evaluation techniques, leading to fragmented discussions. This study aims to ”evaluate the evaluation methods,” focusing mainly on the faithfulness metric, deemed especially significant in evaluation criteria. We conducted empirical experiments related to existing evaluation techniques. The experiments approached the topic from two angles: correlation-based comparative evaluations and property verification using random sequences. In the former experiment, we investigated the correlation between faithfulness evaluation tests using numerous models and feature attribution methods. As a result, we found that very few test combinations exhibited high correlation, and many combinations showed low or no correlation. In the latter experiment, we observed that the measured faithfulness varied depending on the model and dataset by using random sequences instead of feature attribution methods to verify the properties of the faithfulness tests.","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Domain Prompt Learning for Efficiently Adapting CLIP to Unseen Domains 领域提示学习方法使CLIP有效适应未知领域
Pub Date : 2023-11-01 DOI: 10.1527/tjsai.38-6_b-mc2
Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, Yusuke Iwasawa
Domain generalization (DG) is a difficult transfer learning problem aiming to learn a generalizable model for unseen domains. Recent foundation models (FMs) are robust to many distribution shifts and, therefore, should substantially improve the performance of DG. In this work, we study generic ways to adopt contrastive languageimage pre-training (CLIP), a visual-language foundation model, for DG problems in image classification. While empirical risk minimization (ERM) greatly improves the accuracy with bigger backbones and training datasets using standard DG benchmarks, fine-tuning FMs is not practical in many real-world situations. We propose Domain Prompt Learning (DPL) as a novel approach for domain inference in the form of conditional prompt generation. DPL achieved a significant accuracy improvement with only training a lightweight prompt generator (a three-layer MLP), whose parameter is of equivalent scale to the classification projector in the previous DG literature. Combining DPL with CLIP provides surprising performance, raising the accuracy of zero-shot CLIP from 73.7% to 79.3% on several standard datasets, namely PACS, VLCS, OfficeHome, and TerraIncognita. We hope the simplicity and success of our approach lead to broader adoption and analysis of foundation models in the domain generalization field.
领域泛化(DG)是一个复杂的迁移学习问题,旨在学习未知领域的可泛化模型。最近的基础模型(FMs)对许多分布变化都具有鲁棒性,因此,应该从本质上提高DG的性能。在这项工作中,我们研究了采用对比语言图像预训练(CLIP)的通用方法,这是一种视觉语言基础模型,用于图像分类中的DG问题。虽然经验风险最小化(ERM)使用标准DG基准极大地提高了大型骨干和训练数据集的准确性,但微调FMs在许多实际情况下并不实用。我们提出领域提示学习(DPL)作为一种以条件提示生成形式进行领域推理的新方法。DPL只需要训练一个轻量级的提示生成器(三层MLP),其参数与之前DG文献中的分类投影仪的规模相当,就可以显著提高DPL的精度。DPL与CLIP的结合提供了令人惊讶的性能,在几个标准数据集(即PACS, VLCS, OfficeHome和TerraIncognita)上将零射击CLIP的准确率从73.7%提高到79.3%。我们希望我们的方法的简单性和成功导致基础模型在领域泛化领域得到更广泛的采用和分析。
{"title":"Domain Prompt Learning for Efficiently Adapting CLIP to Unseen Domains","authors":"Xin Zhang, Shixiang Shane Gu, Yutaka Matsuo, Yusuke Iwasawa","doi":"10.1527/tjsai.38-6_b-mc2","DOIUrl":"https://doi.org/10.1527/tjsai.38-6_b-mc2","url":null,"abstract":"Domain generalization (DG) is a difficult transfer learning problem aiming to learn a generalizable model for unseen domains. Recent foundation models (FMs) are robust to many distribution shifts and, therefore, should substantially improve the performance of DG. In this work, we study generic ways to adopt contrastive languageimage pre-training (CLIP), a visual-language foundation model, for DG problems in image classification. While empirical risk minimization (ERM) greatly improves the accuracy with bigger backbones and training datasets using standard DG benchmarks, fine-tuning FMs is not practical in many real-world situations. We propose Domain Prompt Learning (DPL) as a novel approach for domain inference in the form of conditional prompt generation. DPL achieved a significant accuracy improvement with only training a lightweight prompt generator (a three-layer MLP), whose parameter is of equivalent scale to the classification projector in the previous DG literature. Combining DPL with CLIP provides surprising performance, raising the accuracy of zero-shot CLIP from 73.7% to 79.3% on several standard datasets, namely PACS, VLCS, OfficeHome, and TerraIncognita. We hope the simplicity and success of our approach lead to broader adoption and analysis of foundation models in the domain generalization field.","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135161241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Detecting Fraudulent Cryptocurrencies Using Natural Language Processing Techniques 使用自然语言处理技术检测欺诈性加密货币
Pub Date : 2023-09-01 DOI: 10.1527/tjsai.38-5_e-n34
Mitsuaki Ueno, Takashi Sano, H. Honda, Shugo Nakamura
{"title":"Detecting Fraudulent Cryptocurrencies Using Natural Language Processing Techniques","authors":"Mitsuaki Ueno, Takashi Sano, H. Honda, Shugo Nakamura","doi":"10.1527/tjsai.38-5_e-n34","DOIUrl":"https://doi.org/10.1527/tjsai.38-5_e-n34","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42679967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
設計根拠に注目した鉄鋼材料設計知識モデルの記述と活用 关注设计依据的钢铁材料设计知识模型的描述和活用
Pub Date : 2023-09-01 DOI: 10.1527/tjsai.38-5_c-mc1
Yoshinobu Kitamura, Junta Fujikawa, Masaaki Imazono, Kazuya Asano, Toru Inazumi, Taro Kizu, Yoshimasa Funakawa, Mayumi Ojima, Yukinori Iizuka
{"title":"設計根拠に注目した鉄鋼材料設計知識モデルの記述と活用","authors":"Yoshinobu Kitamura, Junta Fujikawa, Masaaki Imazono, Kazuya Asano, Toru Inazumi, Taro Kizu, Yoshimasa Funakawa, Mayumi Ojima, Yukinori Iizuka","doi":"10.1527/tjsai.38-5_c-mc1","DOIUrl":"https://doi.org/10.1527/tjsai.38-5_c-mc1","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67113324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse Pose Generation for Multi-Joint Characters Conditional on Body Position using IMLE 基于IMLE的基于体位条件的多关节角色多姿态生成
Pub Date : 2023-09-01 DOI: 10.1527/tjsai.38-5_b-mb2
Kazuma Sasaki, Shinya Kitaoka, Yuri Odagiri
{"title":"Diverse Pose Generation for Multi-Joint Characters Conditional on Body Position using IMLE","authors":"Kazuma Sasaki, Shinya Kitaoka, Yuri Odagiri","doi":"10.1527/tjsai.38-5_b-mb2","DOIUrl":"https://doi.org/10.1527/tjsai.38-5_b-mb2","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67113353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-Based Reinforcement Learning using Model Mediator in Dynamic Multi-Agent Environment 动态多智能体环境中基于模型的模型中介强化学习
Pub Date : 2023-09-01 DOI: 10.1527/tjsai.38-5_a-mb1
Shota Imai, Yusuke Iwasawa, Yutaka Matsuo
{"title":"Model-Based Reinforcement Learning using Model Mediator in Dynamic Multi-Agent Environment","authors":"Shota Imai, Yusuke Iwasawa, Yutaka Matsuo","doi":"10.1527/tjsai.38-5_a-mb1","DOIUrl":"https://doi.org/10.1527/tjsai.38-5_a-mb1","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45816069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Counterfactual Outcomes of Time-varying Treatments using Deep Gaussian Process 用深度高斯过程估计时变处理的反事实结果
Pub Date : 2023-09-01 DOI: 10.1527/tjsai.38-5_d-mc3
Y. Norimatsu
{"title":"Estimating Counterfactual Outcomes of Time-varying Treatments using Deep Gaussian Process","authors":"Y. Norimatsu","doi":"10.1527/tjsai.38-5_d-mc3","DOIUrl":"https://doi.org/10.1527/tjsai.38-5_d-mc3","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45216499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposal of Response Continuity Prediction Model for Attentive Listening Agents 一种专注听力主体反应连续性预测模型的提出
Pub Date : 2023-07-01 DOI: 10.1527/tjsai.38-4_c-mb5
Xing Yan, Yasuharu Den
{"title":"A Proposal of Response Continuity Prediction Model for Attentive Listening Agents","authors":"Xing Yan, Yasuharu Den","doi":"10.1527/tjsai.38-4_c-mb5","DOIUrl":"https://doi.org/10.1527/tjsai.38-4_c-mb5","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46026491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
日本語文法誤り訂正における事前学習済みモデルを用いたデータ増強 日语语法纠错中使用事先学习完毕模型的数据增强
Pub Date : 2023-07-01 DOI: 10.1527/tjsai.38-4_a-l41
Hideyoshi Kato, Masaaki Okabe, Michiharu Kitano, Hiroshi Yadohisa
{"title":"日本語文法誤り訂正における事前学習済みモデルを用いたデータ増強","authors":"Hideyoshi Kato, Masaaki Okabe, Michiharu Kitano, Hiroshi Yadohisa","doi":"10.1527/tjsai.38-4_a-l41","DOIUrl":"https://doi.org/10.1527/tjsai.38-4_a-l41","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45397228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Effect of Increasing Number of Topics to Polarization and Echo Chambers on SNS 极化和回声室主题数量增加对SNS的影响
Pub Date : 2023-07-01 DOI: 10.1527/tjsai.38-4_b-n11
T. Nagura, E. Akiyama
{"title":"The Effect of Increasing Number of Topics to Polarization and Echo Chambers on SNS","authors":"T. Nagura, E. Akiyama","doi":"10.1527/tjsai.38-4_b-n11","DOIUrl":"https://doi.org/10.1527/tjsai.38-4_b-n11","url":null,"abstract":"","PeriodicalId":23256,"journal":{"name":"Transactions of The Japanese Society for Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47658059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Transactions of The Japanese Society for Artificial Intelligence
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1