Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5127
A. Abdulaal, A. Shah, A. Pathan
Saving energy and improving the lifetime of wireless sensor networks (WSNs) has remained as a key research challenge for some time. Low-energy adaptive clustering hierarchy (LEACH), a classical protocol is designed originally for the purpose of reducing and balancing the network’s energy consumption. However, as the distances between the cluster head (CH) and the member nodes are not taken into consideration, it results in the uneven distribution of the clusters and uneven consumption of the energy in the network. Choosing the CHs with no distinction is an issue as well. Based on the original algorithm, a novel modified LEACH (NM-LEACH) has been proposed, considering critical problems that exist in the network. NM-LEACH protocol is capable of reasonably solving the number of the CHs in each round and takes the energy as a factor of weight under consideration in selecting the CH. The proposed protocol enhances performance by extending the WSN lifecycle, which results in increasing the balance of the energy consumption in the network, and improving the efficiency of the network.
{"title":"NM-LEACH: A Novel Modified LEACH Protocol to Improve Performance in WSN","authors":"A. Abdulaal, A. Shah, A. Pathan","doi":"10.17762/ijcnis.v14i1.5127","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5127","url":null,"abstract":"Saving energy and improving the lifetime of wireless sensor networks (WSNs) has remained as a key research challenge for some time. Low-energy adaptive clustering hierarchy (LEACH), a classical protocol is designed originally for the purpose of reducing and balancing the network’s energy consumption. However, as the distances between the cluster head (CH) and the member nodes are not taken into consideration, it results in the uneven distribution of the clusters and uneven consumption of the energy in the network. Choosing the CHs with no distinction is an issue as well. Based on the original algorithm, a novel modified LEACH (NM-LEACH) has been proposed, considering critical problems that exist in the network. NM-LEACH protocol is capable of reasonably solving the number of the CHs in each round and takes the energy as a factor of weight under consideration in selecting the CH. The proposed protocol enhances performance by extending the WSN lifecycle, which results in increasing the balance of the energy consumption in the network, and improving the efficiency of the network.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124795346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5078
Mazoon Hashil Al Rubaiei, Hothefa Shaker Jassim, B. Sharef
A Mobile Ad Hoc Network MANET is composed of a freely and mobility set of mobile nodes. They form a temporary dynamic wireless network without any infrastructure. Since the nodes act as both host and router in their communication, they act as a router provide connectivity by forwarding data packets among intermediate nodes to the destination. The routing protocol is used to grove their communication and connectivity as example, the Ad On-demand distance vector (AODV) routing protocol. However, due to the lack of security vulnerabilities of routing protocols and the absence of infrastructure, MANET is vulnerable to various security threats and attacks. This paper examines the impact of two types of attacks on AODV routing protocol using Network Simulator version 2 (NS2) environment. These attacks are Blackhole and Wormhole Attacks. The aim of both of them is to prevent data packets to reach the destination node and dropping all the traffic.
{"title":"Performance analysis of black hole and worm hole attacks in MANETs","authors":"Mazoon Hashil Al Rubaiei, Hothefa Shaker Jassim, B. Sharef","doi":"10.17762/ijcnis.v14i1.5078","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5078","url":null,"abstract":"A Mobile Ad Hoc Network MANET is composed of a freely and mobility set of mobile nodes. They form a temporary dynamic wireless network without any infrastructure. Since the nodes act as both host and router in their communication, they act as a router provide connectivity by forwarding data packets among intermediate nodes to the destination. The routing protocol is used to grove their communication and connectivity as example, the Ad On-demand distance vector (AODV) routing protocol. However, due to the lack of security vulnerabilities of routing protocols and the absence of infrastructure, MANET is vulnerable to various security threats and attacks. This paper examines the impact of two types of attacks on AODV routing protocol using Network Simulator version 2 (NS2) environment. These attacks are Blackhole and Wormhole Attacks. The aim of both of them is to prevent data packets to reach the destination node and dropping all the traffic. ","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131033726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5215
Marvy Badr Monir, Amr Ayman Mohamed
Wireless sensor networks are used in improving conditions in the practical field and real life which lead researchers and developers to further research it and work into improving this field. These networks consist of sensor nodes that can help acquire data and information about temperature and pressure dependent on the environment of the location which are sent from. After all that, we are bounded by a really important factor which can determine everything which is Energy. Since sensor nodes send data and information to web applications, they need an energy source to operate. Their main energy source is their batteries which offer limited source of energy. Hence, various protocols are introduced to help in many parameters of a wireless sensor network such as increasing lifetime and decreasing consumption of energy, in other words, increasing the Energy Efficiency (EF). In this paper, we evaluate consumption of average energy for various protocols used in this context after each complete logical round for these protocols, such as Energy Efficient Clustering Scheme and Stable Election Protocol. Finally, we used Matlab tool to generate results which indicate that the protocol used in this paper is efficient and reliable.
{"title":"Energy Aware Routing for Wireless Sensor Networks","authors":"Marvy Badr Monir, Amr Ayman Mohamed","doi":"10.17762/ijcnis.v14i1.5215","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5215","url":null,"abstract":"Wireless sensor networks are used in improving conditions in the practical field and real life which lead researchers and developers to further research it and work into improving this field. These networks consist of sensor nodes that can help acquire data and information about temperature and pressure dependent on the environment of the location which are sent from. After all that, we are bounded by a really important factor which can determine everything which is Energy. Since sensor nodes send data and information to web applications, they need an energy source to operate. Their main energy source is their batteries which offer limited source of energy. Hence, various protocols are introduced to help in many parameters of a wireless sensor network such as increasing lifetime and decreasing consumption of energy, in other words, increasing the Energy Efficiency (EF). In this paper, we evaluate consumption of average energy for various protocols used in this context after each complete logical round for these protocols, such as Energy Efficient Clustering Scheme and Stable Election Protocol. Finally, we used Matlab tool to generate results which indicate that the protocol used in this paper is efficient and reliable.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130676813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5180
Ahmed El-Yahyaoui, F. Omary
The Modulo 1 Factoring Problem (M1FP) is an elegant mathematical problem which could be exploited to design safe cryptographic protocols and encryption schemes that resist to post quantum attacks. The ELGAMAL encryption scheme is a well-known and efficient public key algorithm designed by Taher ELGAMAL from discrete logarithm problem. It is always highly used in Internet security and many other applications after a large number of years. However, the imminent arrival of quantum computing threatens the security of ELGAMAL cryptosystem and impose to cryptologists to prepare a resilient algorithm to quantum computer-based attacks. In this paper we will present a like-ELGAMAL cryptosystem based on the M1FP NP-hard problem. This encryption scheme is very simple but efficient and supposed to be resistant to post quantum attacks.
{"title":"A Like ELGAMAL Cryptosystem But Resistant To Post-Quantum Attacks","authors":"Ahmed El-Yahyaoui, F. Omary","doi":"10.17762/ijcnis.v14i1.5180","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5180","url":null,"abstract":"The Modulo 1 Factoring Problem (M1FP) is an elegant mathematical problem which could be exploited to design safe cryptographic protocols and encryption schemes that resist to post quantum attacks. The ELGAMAL encryption scheme is a well-known and efficient public key algorithm designed by Taher ELGAMAL from discrete logarithm problem. It is always highly used in Internet security and many other applications after a large number of years. However, the imminent arrival of quantum computing threatens the security of ELGAMAL cryptosystem and impose to cryptologists to prepare a resilient algorithm to quantum computer-based attacks. In this paper we will present a like-ELGAMAL cryptosystem based on the M1FP NP-hard problem. This encryption scheme is very simple but efficient and supposed to be resistant to post quantum attacks.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130378775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5260
Tran Sy Nam, Van‐Phuc Hoang, Nguyen Van Long
In this paper, we present a high-throughput FPGA implementation of IPSec core. The core supports both NAT and non-NAT mode and can be used in high speed security gateway devices. Although IPSec ESP is very computing intensive for its cryptography process, our implementation shows that it can achieve high throughput and low lantency. The system is realized on the Zynq XC7Z045 from Xilinx and was verified and tested in practice. Results show that the design can gives a peak throughput of 5.721 Gbps for the IPSec ESP tunnel mode in NAT mode and 7.753 Gbps in non-NAT mode using one single AES encrypt core. We also compare the performance of the core when running in other mode of encryption.
{"title":"A High-Throughput Hardware Implementation of NAT Traversal For IPSEC VPN","authors":"Tran Sy Nam, Van‐Phuc Hoang, Nguyen Van Long","doi":"10.17762/ijcnis.v14i1.5260","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5260","url":null,"abstract":"In this paper, we present a high-throughput FPGA implementation of IPSec core. The core supports both NAT and non-NAT mode and can be used in high speed security gateway devices. Although IPSec ESP is very computing intensive for its cryptography process, our implementation shows that it can achieve high throughput and low lantency. The system is realized on the Zynq XC7Z045 from Xilinx and was verified and tested in practice. Results show that the design can gives a peak throughput of 5.721 Gbps for the IPSec ESP tunnel mode in NAT mode and 7.753 Gbps in non-NAT mode using one single AES encrypt core. We also compare the performance of the core when running in other mode of encryption.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131843524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5065
Ahmad A. Al-Daraiseh, Rasel Chowdhury, Hakima Ould-Slimane, C. Talhi, M. Taha
Internet of Things (IoT) as an emerging technology has been transforming the different aspects of our world from simple preprogrammed coffee machine to smart farming. Due to the human nature to simplify and ease of living, human are becoming dependent on these automated IoT devices and smart environments like smart phones, wearable devices, smart home and etc. In order to provide better QoS, these devices needs to work together and share data among them, also to the service providers and the cloud. Since these devices are resource constrained, IoT technology heavily depends on the cloud for processing, analytics and storage. But these data coming from the devices contains lot of personal identity information (PII). Almost all the time, the users of these devices are unaware of these information that is being transmitted or they do not possess the control over the data that they are being sent to the service provider, as well as to the cloud. Even the cloud services and service providers are secured but they are always curious. There are lot of security measures implemented for end to end communication but IoT lacks the mechanism for securing the data that the devices are generating along with access control. In this article we are proposing an approach for the security, privacy and access control of user data using Attribute Based Encryption (ABE) in smart home as the case study.
{"title":"Lightweight Scheme for Smart Home Environments using Offloading Technique","authors":"Ahmad A. Al-Daraiseh, Rasel Chowdhury, Hakima Ould-Slimane, C. Talhi, M. Taha","doi":"10.17762/ijcnis.v14i1.5065","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5065","url":null,"abstract":"Internet of Things (IoT) as an emerging technology has been transforming the different aspects of our world from simple preprogrammed coffee machine to smart farming. Due to the human nature to simplify and ease of living, human are becoming dependent on these automated IoT devices and smart environments like smart phones, wearable devices, smart home and etc. In order to provide better QoS, these devices needs to work together and share data among them, also to the service providers and the cloud. Since these devices are resource constrained, IoT technology heavily depends on the cloud for processing, analytics and storage. But these data coming from the devices contains lot of personal identity information (PII). Almost all the time, the users of these devices are unaware of these information that is being transmitted or they do not possess the control over the data that they are being sent to the service provider, as well as to the cloud. Even the cloud services and service providers are secured but they are always curious. There are lot of security measures implemented for end to end communication but IoT lacks the mechanism for securing the data that the devices are generating along with access control. In this article we are proposing an approach for the security, privacy and access control of user data using Attribute Based Encryption (ABE) in smart home as the case study.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131082467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5206
Islam Osama, M. Rihan, M. Elhefnawy, S. Eldolil, H. Malhat
The growing demands for high data rate wireless connectivity shed lights on the fact that appropriate spectrum regions need to be investigated so that the expected future needs will be satisfied. With this in mind, the research community has shown considerable interest in millimeter-wave (mm-wave) communication. Generally, hybrid transceivers combining the analog phase shifter and the RF chains with digital signal processing (DSP) systems are used for MIMO communication in the fifth generation (5G) wireless networks. This paper presents a survey for different precoding or beamforming techniques that have been proposed in the literature. These beamforming techniques are mainly classified based on their hardware structure into analog and digital beamforming. To reduce the hardware complexity and power consumption, the hybrid precoding techniques that combine analog and digital beamforming can be implemented for mm-wave massive MIMO wireless systems. The performance of the most common hybrid precoding algorithms has been investigated in this paper.
{"title":"A review on Precoding Techniques For mm-Wave Massive MIMO Wireless Systems","authors":"Islam Osama, M. Rihan, M. Elhefnawy, S. Eldolil, H. Malhat","doi":"10.17762/ijcnis.v14i1.5206","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5206","url":null,"abstract":"The growing demands for high data rate wireless connectivity shed lights on the fact that appropriate spectrum regions need to be investigated so that the expected future needs will be satisfied. With this in mind, the research community has shown considerable interest in millimeter-wave (mm-wave) communication. Generally, hybrid transceivers combining the analog phase shifter and the RF chains with digital signal processing (DSP) systems are used for MIMO communication in the fifth generation (5G) wireless networks. This paper presents a survey for different precoding or beamforming techniques that have been proposed in the literature. These beamforming techniques are mainly classified based on their hardware structure into analog and digital beamforming. To reduce the hardware complexity and power consumption, the hybrid precoding techniques that combine analog and digital beamforming can be implemented for mm-wave massive MIMO wireless systems. The performance of the most common hybrid precoding algorithms has been investigated in this paper.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114584539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5208
Olarotimi Kabir Amuda, B. Akinyemi, M. Sanni, Ganiyu A. Aderounmu
Insider threat in cyberspace is a recurring problem since the user activities in a cyber network are often unpredictable. Most existing solutions are not flexible and adaptable to detect sudden change in user’s behaviour in streaming data, which led to a high false alarm rates and low detection rates. In this study, a model that is capable of adapting to the changing pattern in structured cyberspace data streams in order to detect malicious insider activities in cyberspace was proposed. The Computer Emergency Response Team (CERT) dataset was used as the data source in this study. Extracted features from the dataset were normalized using Min-Max normalization. Standard scaler techniques and mutual information gain technique were used to determine the best features for classification. A hybrid detection model was formulated using the synergism of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models. Model simulation was performed using python programming language. Performance evaluation was carried out by assessing and comparing the performance of the proposed model with a selected existing model using accuracy, precision and sensitivity as performance metrics. The result of the simulation showed that the developed model has an increase of 1.48% of detection accuracy, 4.21% of precision and 1.25% sensitivity over the existing model. This indicated that the developed hybrid approach was able to learn from sequences of user actions in a time and frequency domain and improves the detection rate of insider threats in cyberspace.
{"title":"A predictive User behaviour analytic Model for Insider Threats in Cyberspace","authors":"Olarotimi Kabir Amuda, B. Akinyemi, M. Sanni, Ganiyu A. Aderounmu","doi":"10.17762/ijcnis.v14i1.5208","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5208","url":null,"abstract":"Insider threat in cyberspace is a recurring problem since the user activities in a cyber network are often unpredictable. Most existing solutions are not flexible and adaptable to detect sudden change in user’s behaviour in streaming data, which led to a high false alarm rates and low detection rates. In this study, a model that is capable of adapting to the changing pattern in structured cyberspace data streams in order to detect malicious insider activities in cyberspace was proposed. The Computer Emergency Response Team (CERT) dataset was used as the data source in this study. Extracted features from the dataset were normalized using Min-Max normalization. Standard scaler techniques and mutual information gain technique were used to determine the best features for classification. A hybrid detection model was formulated using the synergism of Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models. Model simulation was performed using python programming language. Performance evaluation was carried out by assessing and comparing the performance of the proposed model with a selected existing model using accuracy, precision and sensitivity as performance metrics. The result of the simulation showed that the developed model has an increase of 1.48% of detection accuracy, 4.21% of precision and 1.25% sensitivity over the existing model. This indicated that the developed hybrid approach was able to learn from sequences of user actions in a time and frequency domain and improves the detection rate of insider threats in cyberspace.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128664231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5182
M. Monowar
Implantable Wireless Body Area Network (IWBAN), a network of implantable medical sensors, is one of the emerging network paradigms due to the rapid proliferation of wireless technologies and growing demand of sophisticated healthcare. The wireless sensors in IWBAN is capable of communicating with each other through radio frequency (RF) link. However, recurring wireless communication inside the human body induces heat causing severe thermal damage to the human tissue which, if not controlled, may appear as a threat to human life. Moreover, higher propagation loss inside the human body as well as low-power requirement of the sensor nodes necessitate multi-hop communication for IWBAN. A IWBAN also requires meeting certain Quality of Service demands in terms of energy, delay, reliability etc. These pressing concerns engender the design of TRW-MAC: A thermal-aware receiver-driven wake-up radio enabled duty cycle MAC protocol for multi-hop IWBANs in Internet of Things. TRW-MAC introduces a thermal-aware duty cycle adjustment mechanism to reduce temperature inside the body and adopts wake-up radio (WuR) scheme for attaining higher energy efficiency. The protocol devises a wake-up estimation scheme to facilitate staggered wake-up schedule for multi-hop transmission. A superframe structure is introduced that utilizes both contention-based and contention free medium access operations. The performance of TRW-MAC is evaluated through simulations that exhibit its superior performance in attaining lower thermal-rise as well as satisfying other QoS metrics in terms of energy-efficiency, delay and reliability.
{"title":"TRW-MAC: A thermal-aware receiver-driven wake-up radio enabled duty cycle MAC protocol for multi-hop implantable wireless body area networks in Internet of Things","authors":"M. Monowar","doi":"10.17762/ijcnis.v14i1.5182","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5182","url":null,"abstract":"Implantable Wireless Body Area Network (IWBAN), a network of implantable medical sensors, is one of the emerging network paradigms due to the rapid proliferation of wireless technologies and growing demand of sophisticated healthcare. The wireless sensors in IWBAN is capable of communicating with each other through radio frequency (RF) link. However, recurring wireless communication inside the human body induces heat causing severe thermal damage to the human tissue which, if not controlled, may appear as a threat to human life. Moreover, higher propagation loss inside the human body as well as low-power requirement of the sensor nodes necessitate multi-hop communication for IWBAN. A IWBAN also requires meeting certain Quality of Service demands in terms of energy, delay, reliability etc. These pressing concerns engender the design of TRW-MAC: A thermal-aware receiver-driven wake-up radio enabled duty cycle MAC protocol for multi-hop IWBANs in Internet of Things. TRW-MAC introduces a thermal-aware duty cycle adjustment mechanism to reduce temperature inside the body and adopts wake-up radio (WuR) scheme for attaining higher energy efficiency. The protocol devises a wake-up estimation scheme to facilitate staggered wake-up schedule for multi-hop transmission. A superframe structure is introduced that utilizes both contention-based and contention free medium access operations. The performance of TRW-MAC is evaluated through simulations that exhibit its superior performance in attaining lower thermal-rise as well as satisfying other QoS metrics in terms of energy-efficiency, delay and reliability.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124998675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-04-15DOI: 10.17762/ijcnis.v14i1.5264
Z. Chiba, Moulay Seddiq El Kasmi Alaoui, N. Abghour, K. Moussaid
Cloud computing (CC) is the fastest-growing data hosting and computational technology that stands today as a satisfactory answer to the problem of data storage and computing. Thereby, most organizations are now migratingtheir services into the cloud due to its appealing features and its tangible advantages. Nevertheless, providing privacy and security to protect cloud assets and resources still a very challenging issue. To address the aboveissues, we propose a smart approach to construct automatically an efficient and effective anomaly network IDS based on Deep Neural Network, by using a novel hybrid optimization framework “ISAGASAA”. ISAGASAA framework combines our new self-adaptive heuristic search algorithm called “Improved Self-Adaptive Genetic Algorithm” (ISAGA) and Simulated Annealing Algorithm (SAA). Our approach consists of using ISAGASAA with the aim of seeking the optimal or near optimal combination of most pertinent values of the parametersincluded in building of DNN based IDS or impacting its performance, which guarantee high detection rate, high accuracy and low false alarm rate. The experimental results turn out the capability of our IDS to uncover intrusionswith high detection accuracy and low false alarm rate, and demonstrate its superiority in comparison with stateof-the-art methods.
{"title":"Automatic Building of a Powerful IDS for The Cloud Based on Deep Neural Network by Using a Novel Combination of Simulated Annealing Algorithm and Improved Self- Adaptive Genetic Algorithm","authors":"Z. Chiba, Moulay Seddiq El Kasmi Alaoui, N. Abghour, K. Moussaid","doi":"10.17762/ijcnis.v14i1.5264","DOIUrl":"https://doi.org/10.17762/ijcnis.v14i1.5264","url":null,"abstract":"Cloud computing (CC) is the fastest-growing data hosting and computational technology that stands today as a satisfactory answer to the problem of data storage and computing. Thereby, most organizations are now migratingtheir services into the cloud due to its appealing features and its tangible advantages. Nevertheless, providing privacy and security to protect cloud assets and resources still a very challenging issue. To address the aboveissues, we propose a smart approach to construct automatically an efficient and effective anomaly network IDS based on Deep Neural Network, by using a novel hybrid optimization framework “ISAGASAA”. ISAGASAA framework combines our new self-adaptive heuristic search algorithm called “Improved Self-Adaptive Genetic Algorithm” (ISAGA) and Simulated Annealing Algorithm (SAA). Our approach consists of using ISAGASAA with the aim of seeking the optimal or near optimal combination of most pertinent values of the parametersincluded in building of DNN based IDS or impacting its performance, which guarantee high detection rate, high accuracy and low false alarm rate. The experimental results turn out the capability of our IDS to uncover intrusionswith high detection accuracy and low false alarm rate, and demonstrate its superiority in comparison with stateof-the-art methods.","PeriodicalId":232613,"journal":{"name":"Int. J. Commun. Networks Inf. Secur.","volume":"150 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121513982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}