Background: Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation.
Methods: We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023.
Results: QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples.
Conclusion: We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.
{"title":"Ultrasensitive detection of aggregated α-synuclein using quiescent seed amplification assay for the diagnosis of Parkinson's disease.","authors":"Hengxu Mao, Yaoyun Kuang, Du Feng, Xiang Chen, Lin Lu, Wencheng Xia, Tingting Gan, Weimeng Huang, Wenyuan Guo, Hancun Yi, Yirong Yang, Zhuohua Wu, Wei Dai, Hui Sun, Jieyuan Wu, Rui Zhang, Shenqing Zhang, Xiuli Lin, Yuxuan Yong, Xinling Yang, Hongyan Li, Wenjun Wu, Xiaoyun Huang, Zhaoxiang Bian, Hoi Leong Xavier Wong, Xin-Lu Wang, Michael Poppell, Yi Ren, Cong Liu, Wen-Quan Zou, Shengdi Chen, Ping-Yi Xu","doi":"10.1186/s40035-024-00426-9","DOIUrl":"10.1186/s40035-024-00426-9","url":null,"abstract":"<p><strong>Background: </strong>Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation.</p><p><strong>Methods: </strong>We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023.</p><p><strong>Results: </strong>QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples.</p><p><strong>Conclusion: </strong>We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"35"},"PeriodicalIF":10.8,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11267792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761131","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1186/s40035-024-00423-y
Maria Luisa De Paolis, Ilaria Paoletti, Claudio Zaccone, Fioravante Capone, Marcello D'Amelio, Paraskevi Krashia
The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.
{"title":"Transcranial alternating current stimulation (tACS) at gamma frequency: an up-and-coming tool to modify the progression of Alzheimer's Disease.","authors":"Maria Luisa De Paolis, Ilaria Paoletti, Claudio Zaccone, Fioravante Capone, Marcello D'Amelio, Paraskevi Krashia","doi":"10.1186/s40035-024-00423-y","DOIUrl":"10.1186/s40035-024-00423-y","url":null,"abstract":"<p><p>The last decades have witnessed huge efforts devoted to deciphering the pathological mechanisms underlying Alzheimer's Disease (AD) and to testing new drugs, with the recent FDA approval of two anti-amyloid monoclonal antibodies for AD treatment. Beyond these drug-based experimentations, a number of pre-clinical and clinical trials are exploring the benefits of alternative treatments, such as non-invasive stimulation techniques on AD neuropathology and symptoms. Among the different non-invasive brain stimulation approaches, transcranial alternating current stimulation (tACS) is gaining particular attention due to its ability to externally control gamma oscillations. Here, we outline the current knowledge concerning the clinical efficacy, safety, ease-of-use and cost-effectiveness of tACS on early and advanced AD, applied specifically at 40 Hz frequency, and also summarise pre-clinical results on validated models of AD and ongoing patient-centred trials.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"33"},"PeriodicalIF":10.8,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11210106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141459506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-19DOI: 10.1186/s40035-024-00418-9
Rocío Del Carmen Bravo-Miana, Jone Karmele Arizaga-Echebarria, David Otaegui
The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.
中枢神经系统(CNS)由神经胶质细胞和神经元细胞组成,这两种细胞都会释放参与中枢神经系统平衡的细胞外囊泡 (EV)。细胞外囊泡可以作为分析多维生物活性载体的纳米生物平台,是最佳候选者之一。有了了解中枢神经系统分子水平过程的窗口,就能为中枢神经系统研究开辟一条新途径。这引发了一个特别的兴趣点:血液中的中枢神经系统衍生 EV 能否作为循环生物标志物,反映神经系统疾病的病理状态?L1细胞粘附分子(L1CAM)是一种广泛报道的生物标记物,可用于识别外周血中中枢神经系统衍生的EV。然而,有研究表明,L1CAM 在中枢神经系统外也有表达。鉴于多发性硬化症、肌萎缩性脊髓侧索硬化症、帕金森病和阿尔茨海默病等神经退行性疾病的主要相关数据都是利用 L1CAM 阳性 EVs 获得的,因此需要努力克服目前与其特异性相关的挑战。从这个意义上说,其他中枢神经系统衍生EV的表面生物标记物,如谷氨酸天冬氨酸转运体(GLAST)和髓鞘少突胶质细胞糖蛋白(MOG)等,已开始被使用。建立一组 EV 生物标记物来分析血液中来源于中枢神经系统的 EV 可提高这类研究所需的特异性和灵敏度。本综述涵盖了与神经系统疾病患者脑脊液和血液样本中中枢神经系统衍生 EVs 有关的主要证据,重点是已报道的生物标记物及其分离技术的可能性。EVs 正在成为大脑生理病理的一面镜子,既能反映局部变化,也能反映全身变化。因此,当EV研究和临床应用的技术障碍被克服后,新的疾病特异性EV生物标记物就会被发现,从而促进从传统医学到个性化医学的转变。
{"title":"Central nervous system-derived extracellular vesicles: the next generation of neural circulating biomarkers?","authors":"Rocío Del Carmen Bravo-Miana, Jone Karmele Arizaga-Echebarria, David Otaegui","doi":"10.1186/s40035-024-00418-9","DOIUrl":"10.1186/s40035-024-00418-9","url":null,"abstract":"<p><p>The central nervous system (CNS) is integrated by glial and neuronal cells, and both release extracellular vesicles (EVs) that participate in CNS homeostasis. EVs could be one of the best candidates to operate as nanosized biological platforms for analysing multidimensional bioactive cargos, which are protected during systemic circulation of EVs. Having a window into the molecular level processes that are happening in the CNS could open a new avenue in CNS research. This raises a particular point of interest: can CNS-derived EVs in blood serve as circulating biomarkers that reflect the pathological status of neurological diseases? L1 cell adhesion molecule (L1CAM) is a widely reported biomarker to identify CNS-derived EVs in peripheral blood. However, it has been demonstrated that L1CAM is also expressed outside the CNS. Given that principal data related to neurodegenerative diseases, such as multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Alzheimer's disease were obtained using L1CAM-positive EVs, efforts to overcome present challenges related to its specificity are required. In this sense, other surface biomarkers for CNS-derived EVs, such as glutamate aspartate transporter (GLAST) and myelin oligodendrocyte glycoprotein (MOG), among others, have started to be used. Establishing a panel of EV biomarkers to analyse CNS-derived EVs in blood could increase the specificity and sensitivity necessary for these types of studies. This review covers the main evidence related to CNS-derived EVs in cerebrospinal fluid and blood samples of patients with neurological diseases, focusing on the reported biomarkers and the technical possibilities for their isolation. EVs are emerging as a mirror of brain physiopathology, reflecting both localized and systemic changes. Therefore, when the technical hindrances for EV research and clinical applications are overcome, novel disease-specific panels of EV biomarkers would be discovered to facilitate transformation from traditional medicine to personalized medicine.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"32"},"PeriodicalIF":10.8,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186231/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1186/s40035-024-00421-0
Ellen Appleton, Shervin Khosousi, Michael Ta, Michael Nalls, Andrew B Singleton, Andrea Sturchio, Ioanna Markaki, Wojciech Paslawski, Hirotaka Iwaki, Per Svenningsson
{"title":"DOPA-decarboxylase is elevated in CSF, but not plasma, in prodromal and de novo Parkinson's disease.","authors":"Ellen Appleton, Shervin Khosousi, Michael Ta, Michael Nalls, Andrew B Singleton, Andrea Sturchio, Ioanna Markaki, Wojciech Paslawski, Hirotaka Iwaki, Per Svenningsson","doi":"10.1186/s40035-024-00421-0","DOIUrl":"10.1186/s40035-024-00421-0","url":null,"abstract":"","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"31"},"PeriodicalIF":12.6,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11165760/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141306939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Retraction Note: Asiaticoside, a trisaccaride triterpene induces biochemical and molecular variations in brain of mice with parkinsonism","authors":"Uvarajan Sampath, Vanisree Arambakkam Janardhanam","doi":"10.1186/s40035-024-00424-x","DOIUrl":"https://doi.org/10.1186/s40035-024-00424-x","url":null,"abstract":"This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1186/2047-9158-2-23.","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"41 1","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141253539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-03DOI: 10.1186/s40035-024-00419-8
Juan I López-Carbonero, Irene García-Toledo, Laura Fernández-Hernández, Pablo Bascuñana, María J Gil-Moreno, Jordi A Matías-Guiu, Silvia Corrochano
TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.
{"title":"In vivo diagnosis of TDP-43 proteinopathies: in search of biomarkers of clinical use.","authors":"Juan I López-Carbonero, Irene García-Toledo, Laura Fernández-Hernández, Pablo Bascuñana, María J Gil-Moreno, Jordi A Matías-Guiu, Silvia Corrochano","doi":"10.1186/s40035-024-00419-8","DOIUrl":"10.1186/s40035-024-00419-8","url":null,"abstract":"<p><p>TDP-43 proteinopathies are a heterogeneous group of neurodegenerative disorders that share the presence of aberrant, misfolded and mislocalized deposits of the protein TDP-43, as in the case of amyotrophic lateral sclerosis and some, but not all, pathological variants of frontotemporal dementia. In recent years, many other diseases have been reported to have primary or secondary TDP-43 proteinopathy, such as Alzheimer's disease, Huntington's disease or the recently described limbic-predominant age-related TDP-43 encephalopathy, highlighting the need for new and accurate methods for the early detection of TDP-43 proteinopathy to help on the stratification of patients with overlapping clinical diagnosis. Currently, TDP-43 proteinopathy remains a post-mortem pathologic diagnosis. Although the main aim is to determine the pathologic TDP-43 proteinopathy in the central nervous system (CNS), the ubiquitous expression of TDP-43 in biofluids and cells outside the CNS facilitates the use of other accessible target tissues that might reflect the potential TDP-43 alterations in the brain. In this review, we describe the main developments in the early detection of TDP-43 proteinopathies, and their potential implications on diagnosis and future treatments.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"29"},"PeriodicalIF":10.8,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11149336/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141237723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1186/s40035-024-00416-x
Miaodan Huang, Yong U Liu, Xiaoli Yao, Dajiang Qin, Huanxing Su
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.
{"title":"Variability in SOD1-associated amyotrophic lateral sclerosis: geographic patterns, clinical heterogeneity, molecular alterations, and therapeutic implications.","authors":"Miaodan Huang, Yong U Liu, Xiaoli Yao, Dajiang Qin, Huanxing Su","doi":"10.1186/s40035-024-00416-x","DOIUrl":"10.1186/s40035-024-00416-x","url":null,"abstract":"<p><p>Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of motor neurons, resulting in global health burden and limited post-diagnosis life expectancy. Although primarily sporadic, familial ALS (fALS) cases suggest a genetic basis. This review focuses on SOD1, the first gene found to be associated with fALS, which has been more recently confirmed by genome sequencing. While informative, databases such as ALSoD and STRENGTH exhibit regional biases. Through a systematic global examination of SOD1 mutations from 1993 to 2023, we found different geographic distributions and clinical presentations. Even though different SOD1 variants are expressed at different protein levels and have different half-lives and dismutase activities, these alterations lead to loss of function that is not consistently correlated with disease severity. Gain of function of toxic aggregates of SOD1 resulting from mutated SOD1 has emerged as one of the key contributors to ALS. Therapeutic interventions specifically targeting toxic gain of function of mutant SOD1, including RNA interference and antibodies, show promise, but a cure remains elusive. This review provides a comprehensive perspective on SOD1-associated ALS and describes molecular features and the complex genetic landscape of SOD1, highlighting its importance in determining diverse clinical manifestations observed in ALS patients and emphasizing the need for personalized therapeutic strategies.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"28"},"PeriodicalIF":10.8,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11138100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141176467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-28DOI: 10.1186/s40035-024-00420-1
Yi-Ting Wang, Nicholas J Ashton, Stijn Servaes, Johanna Nilsson, Marcel S Woo, Tharick A Pascoal, Cécile Tissot, Nesrine Rahmouni, Joseph Therriault, Firoza Lussier, Mira Chamoun, Serge Gauthier, Ann Brinkmalm, Henrik Zetterberg, Kaj Blennow, Pedro Rosa-Neto, Andréa L Benedet
{"title":"The relation of synaptic biomarkers with Aβ, tau, glial activation, and neurodegeneration in Alzheimer's disease.","authors":"Yi-Ting Wang, Nicholas J Ashton, Stijn Servaes, Johanna Nilsson, Marcel S Woo, Tharick A Pascoal, Cécile Tissot, Nesrine Rahmouni, Joseph Therriault, Firoza Lussier, Mira Chamoun, Serge Gauthier, Ann Brinkmalm, Henrik Zetterberg, Kaj Blennow, Pedro Rosa-Neto, Andréa L Benedet","doi":"10.1186/s40035-024-00420-1","DOIUrl":"10.1186/s40035-024-00420-1","url":null,"abstract":"","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"27"},"PeriodicalIF":12.6,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131272/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141158019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-21DOI: 10.1186/s40035-024-00417-w
Lewis K Penny, Richard Lofthouse, Mohammad Arastoo, Andy Porter, Soumya Palliyil, Charles R Harrington, Claude M Wischik
The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.
以生物标志物为主导的临床试验设计对于研究阿尔茨海默病(AD)的淀粉样蛋白靶向疗法具有变革性意义。这些设计确保了在这些试验中正确选择患者,支持靶点参与,并被用于支持疾病改变和临床疗效的说法。最终,最近批准了针对AD的淀粉样蛋白靶向疗法,这也是研究针对AD的tau靶向疗法的临床试验应该注意的地方。淀粉样蛋白靶向临床试验和tau靶向临床试验在临床开发的各个阶段使用生物标记物的目的有明显的重叠。但是,某些生物标记物的使用和解释的潜在背景存在差异,特别是淀粉样蛋白的测量和可溶性磷酸化tau生物标记物的效用。鉴于tau在健康和疾病中的复杂性,最重要的是针对疾病相关的tau进行治疗,并同时开发适当的目标参与检测方法。tau正电子发射断层扫描、反映tau病理学的体液生物标记物以及神经退行性变的下游测量指标对于招募参与者和监测tau靶向临床试验中疾病的改变都非常重要。还应考虑针对不同模式和基于 tau 的靶点设计生物标记物策略和解释。
{"title":"Considerations for biomarker strategies in clinical trials investigating tau-targeting therapeutics for Alzheimer's disease.","authors":"Lewis K Penny, Richard Lofthouse, Mohammad Arastoo, Andy Porter, Soumya Palliyil, Charles R Harrington, Claude M Wischik","doi":"10.1186/s40035-024-00417-w","DOIUrl":"10.1186/s40035-024-00417-w","url":null,"abstract":"<p><p>The use of biomarker-led clinical trial designs has been transformative for investigating amyloid-targeting therapies for Alzheimer's disease (AD). The designs have ensured the correct selection of patients on these trials, supported target engagement and have been used to support claims of disease modification and clinical efficacy. Ultimately, this has recently led to approval of disease-modifying, amyloid-targeting therapies for AD; something that should be noted for clinical trials investigating tau-targeting therapies for AD. There is a clear overlap of the purpose of biomarker use at each stage of clinical development between amyloid-targeting and tau-targeting clinical trials. However, there are differences within the potential context of use and interpretation for some biomarkers in particular measurements of amyloid and utility of soluble, phosphorylated tau biomarkers. Given the complexities of tau in health and disease, it is paramount that therapies target disease-relevant tau and, in parallel, appropriate assays of target engagement are developed. Tau positron emission tomography, fluid biomarkers reflecting tau pathology and downstream measures of neurodegeneration will be important both for participant recruitment and for monitoring disease-modification in tau-targeting clinical trials. Bespoke design of biomarker strategies and interpretations for different modalities and tau-based targets should also be considered.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"25"},"PeriodicalIF":12.6,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11107038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141076776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}