首页 > 最新文献

Translational Neurodegeneration最新文献

英文 中文
Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson’s disease GBA1 相关帕金森病的临床、机理、生物标记和治疗进展
IF 12.6 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-12 DOI: 10.1186/s40035-024-00437-6
Xuxiang Zhang, Heng Wu, Beisha Tang, Jifeng Guo
Parkinson’s disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.
帕金森病(PD)是第二大常见的神经退行性疾病。帕金森病的发病与遗传和环境因素密切相关,其中 GBA1 基因变异是最常见的遗传风险。GBA1 基因突变导致编码酶葡萄糖脑苷脂酶的活性降低,葡萄糖脑苷脂酶通过影响脂质代谢(尤其是鞘磷脂)、溶酶体自噬、内质网以及线粒体和其他细胞功能而介导帕金森病的发生。临床上,GBA1 基因突变的帕金森病(GBA1-PD)在症状严重程度的进展方面具有特殊的特征。在治疗方面,GBA1变异与帕金森病之间关系的发现为靶向治疗干预提供了机会。在这篇综述中,我们探讨了 GBA1-PD 的基因型和表型相关性、病因机制、生物标记物和治疗方法,并总结了目前的研究现状及其面临的挑战。
{"title":"Clinical, mechanistic, biomarker, and therapeutic advances in GBA1-associated Parkinson’s disease","authors":"Xuxiang Zhang, Heng Wu, Beisha Tang, Jifeng Guo","doi":"10.1186/s40035-024-00437-6","DOIUrl":"https://doi.org/10.1186/s40035-024-00437-6","url":null,"abstract":"Parkinson’s disease (PD) is the second most common neurodegenerative disease. The development of PD is closely linked to genetic and environmental factors, with GBA1 variants being the most common genetic risk. Mutations in the GBA1 gene lead to reduced activity of the coded enzyme, glucocerebrosidase, which mediates the development of PD by affecting lipid metabolism (especially sphingolipids), lysosomal autophagy, endoplasmic reticulum, as well as mitochondrial and other cellular functions. Clinically, PD with GBA1 mutations (GBA1-PD) is characterized by particular features regarding the progression of symptom severity. On the therapeutic side, the discovery of the relationship between GBA1 variants and PD offers an opportunity for targeted therapeutic interventions. In this review, we explore the genotypic and phenotypic correlations, etiologic mechanisms, biomarkers, and therapeutic approaches of GBA1-PD and summarize the current state of research and its challenges.","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"56 1","pages":""},"PeriodicalIF":12.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142217397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The microglial P2Y6 receptor as a therapeutic target for neurodegenerative diseases. 作为神经退行性疾病治疗靶点的小胶质细胞 P2Y6 受体。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-07 DOI: 10.1186/s40035-024-00438-5
Jacob M Dundee, Guy C Brown

Neurodegenerative diseases are associated with chronic neuroinflammation in the brain, which can result in microglial phagocytosis of live synapses and neurons that may contribute to cognitive deficits and neuronal loss. The microglial P2Y6 receptor (P2Y6R) is a G-protein coupled receptor, which stimulates microglial phagocytosis when activated by extracellular uridine diphosphate, released by stressed neurons. Knockout or inhibition of P2Y6R can prevent neuronal loss in mouse models of Alzheimer's disease (AD), Parkinson's disease, epilepsy, neuroinflammation and aging, and prevent cognitive deficits in models of AD, epilepsy and aging. This review summarises the known roles of P2Y6R in the physiology and pathology of the brain, and its potential as a therapeutic target to prevent neurodegeneration and other brain pathologies.

神经退行性疾病与大脑中的慢性神经炎症有关,这种炎症可导致小胶质细胞吞噬活的突触和神经元,从而造成认知障碍和神经元丢失。小胶质细胞 P2Y6 受体(P2Y6R)是一种 G 蛋白偶联受体,当被受压神经元释放的细胞外二磷酸尿苷激活时,会刺激小胶质细胞的吞噬作用。在阿尔茨海默病(AD)、帕金森病、癫痫、神经炎症和衰老的小鼠模型中,敲除或抑制 P2Y6R 可防止神经元丢失,并在阿尔茨海默病、癫痫和衰老模型中防止认知缺陷。本综述总结了 P2Y6R 在大脑生理和病理中的已知作用,以及它作为治疗靶点预防神经变性和其他大脑病变的潜力。
{"title":"The microglial P2Y<sub>6</sub> receptor as a therapeutic target for neurodegenerative diseases.","authors":"Jacob M Dundee, Guy C Brown","doi":"10.1186/s40035-024-00438-5","DOIUrl":"10.1186/s40035-024-00438-5","url":null,"abstract":"<p><p>Neurodegenerative diseases are associated with chronic neuroinflammation in the brain, which can result in microglial phagocytosis of live synapses and neurons that may contribute to cognitive deficits and neuronal loss. The microglial P2Y<sub>6</sub> receptor (P2Y<sub>6</sub>R) is a G-protein coupled receptor, which stimulates microglial phagocytosis when activated by extracellular uridine diphosphate, released by stressed neurons. Knockout or inhibition of P2Y<sub>6</sub>R can prevent neuronal loss in mouse models of Alzheimer's disease (AD), Parkinson's disease, epilepsy, neuroinflammation and aging, and prevent cognitive deficits in models of AD, epilepsy and aging. This review summarises the known roles of P2Y<sub>6</sub>R in the physiology and pathology of the brain, and its potential as a therapeutic target to prevent neurodegeneration and other brain pathologies.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"47"},"PeriodicalIF":10.8,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11380353/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurodegenerative disorders, metabolic icebergs, and mitohormesis. 神经退行性疾病、代谢冰山和有丝分裂。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-06 DOI: 10.1186/s40035-024-00435-8
Matthew C L Phillips, Martin Picard

Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.

神经退行性疾病通常根据其标志性的临床、解剖和病理特征进行 "分割",但也可以根据线粒体生物学受损这一共同特征将它们 "归为一类"。因此,我们提出了一个科学框架,将阿尔茨海默病(AD)、帕金森病(PD)、肌萎缩性脊髓侧索硬化症(ALS)和亨廷顿病(HD)概念化为 "代谢冰山",由尖端、主体和基底组成。可见的顶端传达了每种疾病的标志性神经症状、神经退行性区域和神经元蛋白质聚集。隐藏的主体描绘了全身受损的线粒体生物学,它是多方面的,可细分为受损的细胞代谢、细胞特异性有丝分裂型以及线粒体行为、功能、活动和特征。其根本原因包括环境因素,尤其是现代工业毒素、饮食生活方式、认知、身体和社会心理行为,也包括家族性注意力缺失症、帕金森病、肌萎缩性脊髓侧索硬化症以及 HD 的遗传因素。在数年或数十年的时间里,基底长期暴露于特定的环境和遗传因素中,会导致线粒体生物学功能受损,从而最大程度地影响大分子中特定的线粒体亚型,最终在顶端表现为特定神经退行性疾病的标志性特征。我们提出,受损的线粒体生物学可通过激活 "有丝分裂 "进行修复和重新校准,而激活 "有丝分裂 "的最佳方式是采用促进线粒体压力和恢复阶段之间平衡振荡的策略。可持续地利用 "线粒体生成 "可能是一种有效的预防和治疗措施,适用于面临神经退行性疾病风险或患有神经退行性疾病的人群。
{"title":"Neurodegenerative disorders, metabolic icebergs, and mitohormesis.","authors":"Matthew C L Phillips, Martin Picard","doi":"10.1186/s40035-024-00435-8","DOIUrl":"10.1186/s40035-024-00435-8","url":null,"abstract":"<p><p>Neurodegenerative disorders are typically \"split\" based on their hallmark clinical, anatomical, and pathological features, but they can also be \"lumped\" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as \"metabolic icebergs\" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating \"mitohormesis\", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"46"},"PeriodicalIF":10.8,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378521/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142146305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Updates in Alzheimer's disease: from basic research to diagnosis and therapies. 阿尔茨海默病的最新进展:从基础研究到诊断和治疗。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-04 DOI: 10.1186/s40035-024-00432-x
Enjie Liu, Yao Zhang, Jian-Zhi Wang

Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.

阿尔茨海默病(AD)是最常见的神经退行性疾病,病理特征是细胞外β淀粉样蛋白(Aβ)沉积成老年斑,细胞内高磷酸化tau(pTau)堆积成神经纤维缠结。临床上,注意力缺失症患者会出现记忆力衰退和各种认知功能障碍。目前,人们仍未完全了解导致注意力缺失症的确切分子机制,也没有有效的药物来阻止或逆转疾病的发展。在这篇综述中,我们首先介绍了APOE变异、感染和炎症等风险因素如何导致AD;Aβ和tau如何异常累积,以及这种累积如何在AD神经变性中发挥作用。然后,我们总结了常用的实验模型、诊断和预测策略,以及来自 AD 高危人群的外周生物标记物的进展。最后,我们介绍了改变疾病的药物的研发现状,包括新近正式批准的 Aβ 疫苗,以及针对异常 pTau 的新颖且有前景的策略。总之,本文旨在更新从基础机制到临床诊断和治疗的AD研究进展。
{"title":"Updates in Alzheimer's disease: from basic research to diagnosis and therapies.","authors":"Enjie Liu, Yao Zhang, Jian-Zhi Wang","doi":"10.1186/s40035-024-00432-x","DOIUrl":"10.1186/s40035-024-00432-x","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"45"},"PeriodicalIF":10.8,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11373277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142133856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel plasma p-tau181 assay as a specific biomarker of tau pathology in Alzheimer's disease. 将新型血浆 p-tau181 检测法作为阿尔茨海默病 tau 病理学的特异性生物标志物。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-03 DOI: 10.1186/s40035-024-00439-4
Kenji Tagai, Harutsugu Tatebe, Sayo Matsuura, Zhang Hong, Naomi Kokubo, Kiwamu Matsuoka, Hironobu Endo, Asaka Oyama, Kosei Hirata, Hitoshi Shinotoh, Yuko Kataoka, Hideki Matsumoto, Masaki Oya, Shin Kurose, Keisuke Takahata, Masanori Ichihashi, Manabu Kubota, Chie Seki, Hitoshi Shimada, Yuhei Takado, Kazunori Kawamura, Ming-Rong Zhang, Yoshiyuki Soeda, Akihiko Takashima, Makoto Higuchi, Takahiko Tokuda
{"title":"A novel plasma p-tau181 assay as a specific biomarker of tau pathology in Alzheimer's disease.","authors":"Kenji Tagai, Harutsugu Tatebe, Sayo Matsuura, Zhang Hong, Naomi Kokubo, Kiwamu Matsuoka, Hironobu Endo, Asaka Oyama, Kosei Hirata, Hitoshi Shinotoh, Yuko Kataoka, Hideki Matsumoto, Masaki Oya, Shin Kurose, Keisuke Takahata, Masanori Ichihashi, Manabu Kubota, Chie Seki, Hitoshi Shimada, Yuhei Takado, Kazunori Kawamura, Ming-Rong Zhang, Yoshiyuki Soeda, Akihiko Takashima, Makoto Higuchi, Takahiko Tokuda","doi":"10.1186/s40035-024-00439-4","DOIUrl":"10.1186/s40035-024-00439-4","url":null,"abstract":"","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"44"},"PeriodicalIF":10.8,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375937/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142141199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hybrid nanostructures for neurodegenerative disease theranostics: the art in the combination of biomembrane and non-biomembrane nanostructures. 用于神经退行性疾病治疗的混合纳米结构:生物膜与非生物膜纳米结构的结合艺术。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-27 DOI: 10.1186/s40035-024-00436-7
Chao Gao, Ran Xiong, Zhi-Yu Zhang, Hua Peng, Yuan-Kai Gu, Wei Xu, Wei-Ting Yang, Yan Liu, Jie Gao, You Yin

The diagnosis of neurodegenerative diseases (NDDs) remains challenging, and existing therapeutic approaches demonstrate little efficacy. NDD drug delivery can be achieved through the utilization of nanostructures, hence enabling multimodal NDD theranostics. Nevertheless, both biomembrane and non-biomembrane nanostructures possess intrinsic shortcomings that must be addressed by hybridization to create novel nanostructures with versatile applications in NDD theranostics. Hybrid nanostructures display improved biocompatibility, inherent targeting capabilities, intelligent responsiveness, and controlled drug release. This paper provides a concise overview of the latest developments in hybrid nanostructures for NDD theranostics and emphasizes various engineering methodologies for the integration of diverse nanostructures, including liposomes, exosomes, cell membranes, and non-biomembrane nanostructures such as polymers, metals, and hydrogels. The use of a combination technique can significantly augment the precision, intelligence, and efficacy of hybrid nanostructures, therefore functioning as a more robust theranostic approach for NDDs. This paper also addresses the issues that arise in the therapeutic translation of hybrid nanostructures and explores potential future prospects in this field.

神经退行性疾病(NDDs)的诊断仍然具有挑战性,现有的治疗方法疗效甚微。利用纳米结构可以实现神经退行性疾病的药物输送,从而实现多模式的神经退行性疾病治疗。然而,生物膜和非生物膜纳米结构都存在内在缺陷,必须通过杂化来解决这些问题,从而创造出在 NDD 治疗学中具有广泛应用的新型纳米结构。杂化纳米结构具有更好的生物相容性、固有的靶向能力、智能响应能力和可控药物释放能力。本文简明扼要地概述了用于 NDD 治疗的混合纳米结构的最新发展,并强调了整合各种纳米结构(包括脂质体、外泌体、细胞膜以及聚合物、金属和水凝胶等非生物膜纳米结构)的各种工程方法。使用组合技术可以大大提高混合纳米结构的精确性、智能性和功效,从而成为一种更强大的治疗 NDD 的方法。本文还讨论了混合纳米结构在治疗转化过程中出现的问题,并探讨了这一领域未来的潜在前景。
{"title":"Hybrid nanostructures for neurodegenerative disease theranostics: the art in the combination of biomembrane and non-biomembrane nanostructures.","authors":"Chao Gao, Ran Xiong, Zhi-Yu Zhang, Hua Peng, Yuan-Kai Gu, Wei Xu, Wei-Ting Yang, Yan Liu, Jie Gao, You Yin","doi":"10.1186/s40035-024-00436-7","DOIUrl":"10.1186/s40035-024-00436-7","url":null,"abstract":"<p><p>The diagnosis of neurodegenerative diseases (NDDs) remains challenging, and existing therapeutic approaches demonstrate little efficacy. NDD drug delivery can be achieved through the utilization of nanostructures, hence enabling multimodal NDD theranostics. Nevertheless, both biomembrane and non-biomembrane nanostructures possess intrinsic shortcomings that must be addressed by hybridization to create novel nanostructures with versatile applications in NDD theranostics. Hybrid nanostructures display improved biocompatibility, inherent targeting capabilities, intelligent responsiveness, and controlled drug release. This paper provides a concise overview of the latest developments in hybrid nanostructures for NDD theranostics and emphasizes various engineering methodologies for the integration of diverse nanostructures, including liposomes, exosomes, cell membranes, and non-biomembrane nanostructures such as polymers, metals, and hydrogels. The use of a combination technique can significantly augment the precision, intelligence, and efficacy of hybrid nanostructures, therefore functioning as a more robust theranostic approach for NDDs. This paper also addresses the issues that arise in the therapeutic translation of hybrid nanostructures and explores potential future prospects in this field.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"43"},"PeriodicalIF":10.8,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348682/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142081707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trajectory of brain-derived amyloid beta in Alzheimer's disease: where is it coming from and where is it going? 阿尔茨海默氏症脑源性淀粉样蛋白 beta 的轨迹:它从哪里来,又将到哪里去?
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-19 DOI: 10.1186/s40035-024-00434-9
Ni Liu, Anaer Haziyihan, Wei Zhao, Yu Chen, Hongbo Chao

Alzheimer's disease (AD) is a progressive neurological disorder that primarily impacts cognitive function. Currently there are no disease-modifying treatments to stop or slow its progression. Recent studies have found that several peripheral and systemic abnormalities are associated with AD, and our understanding of how these alterations contribute to AD is becoming more apparent. In this review, we focuse on amyloid‑beta (Aβ), a major hallmark of AD, summarizing recent findings on the source of brain-derived Aβ and discussing where and how the brain-derived Aβ is cleared in vivo. Based on these findings, we propose future strategies for AD prevention and treatment, from a novel perspective on Aβ metabolism.

阿尔茨海默病(AD)是一种进展性神经系统疾病,主要影响认知功能。目前还没有改变病情的治疗方法来阻止或减缓其进展。最近的研究发现,一些外周和全身性异常与阿兹海默症有关,而我们对这些改变如何导致阿兹海默症的理解也越来越清晰。在这篇综述中,我们重点讨论了淀粉样蛋白-β(Aβ)--AD 的一个主要标志,总结了有关脑源性 Aβ 来源的最新研究结果,并讨论了脑源性 Aβ 在体内清除的位置和方式。基于这些发现,我们从 Aβ 代谢的新角度出发,提出了预防和治疗老年痴呆症的未来策略。
{"title":"Trajectory of brain-derived amyloid beta in Alzheimer's disease: where is it coming from and where is it going?","authors":"Ni Liu, Anaer Haziyihan, Wei Zhao, Yu Chen, Hongbo Chao","doi":"10.1186/s40035-024-00434-9","DOIUrl":"10.1186/s40035-024-00434-9","url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a progressive neurological disorder that primarily impacts cognitive function. Currently there are no disease-modifying treatments to stop or slow its progression. Recent studies have found that several peripheral and systemic abnormalities are associated with AD, and our understanding of how these alterations contribute to AD is becoming more apparent. In this review, we focuse on amyloid‑beta (Aβ), a major hallmark of AD, summarizing recent findings on the source of brain-derived Aβ and discussing where and how the brain-derived Aβ is cleared in vivo. Based on these findings, we propose future strategies for AD prevention and treatment, from a novel perspective on Aβ metabolism.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"42"},"PeriodicalIF":10.8,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142005386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system. SGLT2 抑制剂:通过对神经系统的多方面影响治疗认知障碍的新型疗法。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-09 DOI: 10.1186/s40035-024-00431-y
Jiaqi Mei, Yi Li, Liyan Niu, Ruikai Liang, Mingyue Tang, Qi Cai, Jingdong Xu, Deju Zhang, Xiaoping Yin, Xiao Liu, Yunfeng Shen, Jianping Liu, Minxuan Xu, Panpan Xia, Jitao Ling, Yuting Wu, Jianqi Liang, Jing Zhang, Peng Yu

The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.

糖尿病发病率的上升使人们开始关注糖尿病的一个重要后遗症:认知障碍。钠-葡萄糖共转运体-2(SGLT2)抑制剂最初是为治疗糖尿病而开发的,现在越来越多的人开始研究它对认知的益处。这些益处可能包括减少氧化应激和神经炎症、减少淀粉样蛋白负荷、增强神经元可塑性以及改善脑葡萄糖利用率。SGLT2 抑制剂的多方面作用和相对较好的副作用使其成为治疗认知障碍的理想候选药物。然而,SGLT2 抑制剂在认知障碍方面的应用并非没有局限性,有必要进行更全面的研究,以充分确定其在认知治疗方面的治疗潜力。在这篇综述中,我们讨论了 SGLT2 在神经功能中的作用,阐明了糖尿病与认知之间的关系,并根据动物实验和临床证据综合了目前有关 SGLT2 抑制剂对认知影响的知识。同时还提出了一些研究空白,以促进进一步的研究。
{"title":"SGLT2 inhibitors: a novel therapy for cognitive impairment via multifaceted effects on the nervous system.","authors":"Jiaqi Mei, Yi Li, Liyan Niu, Ruikai Liang, Mingyue Tang, Qi Cai, Jingdong Xu, Deju Zhang, Xiaoping Yin, Xiao Liu, Yunfeng Shen, Jianping Liu, Minxuan Xu, Panpan Xia, Jitao Ling, Yuting Wu, Jianqi Liang, Jing Zhang, Peng Yu","doi":"10.1186/s40035-024-00431-y","DOIUrl":"10.1186/s40035-024-00431-y","url":null,"abstract":"<p><p>The rising prevalence of diabetes mellitus has casted a spotlight on one of its significant sequelae: cognitive impairment. Sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for diabetes management, are increasingly studied for their cognitive benefits. These benefits may include reduction of oxidative stress and neuroinflammation, decrease of amyloid burdens, enhancement of neuronal plasticity, and improved cerebral glucose utilization. The multifaceted effects and the relatively favorable side-effect profile of SGLT2 inhibitors render them a promising therapeutic candidate for cognitive disorders. Nonetheless, the application of SGLT2 inhibitors for cognitive impairment is not without its limitations, necessitating more comprehensive research to fully determine their therapeutic potential for cognitive treatment. In this review, we discuss the role of SGLT2 in neural function, elucidate the diabetes-cognition nexus, and synthesize current knowledge on the cognitive effects of SGLT2 inhibitors based on animal studies and clinical evidence. Research gaps are proposed to spur further investigation.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"41"},"PeriodicalIF":10.8,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. 神经退行性疾病中的 Tau:分子机制、生物标记物和治疗策略。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-06 DOI: 10.1186/s40035-024-00429-6
Xingyu Zhang, Jiangyu Wang, Zhentao Zhang, Keqiang Ye

The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.

异常 tau 蛋白的沉积是阿尔茨海默病(AD)和一类称为 tau 病的神经退行性疾病的特征。在生理学上,tau 蛋白保持着一种内在紊乱的结构,在神经元中发挥着多种作用。在病理上,tau会发生异常的翻译后修饰,并在tau病中形成低聚物或纤维状聚集体。在这篇综述中,我们简要介绍了几种tau病,并讨论了介导tau聚集和传播的机制。我们还描述了tau病理学的毒性。最后,我们探讨了早期诊断生物标志物和针对 tau 的治疗方法。尽管在动物实验和临床前研究中取得了一些令人鼓舞的成果,但目前仍无法治愈tau病。有必要对tau病的发病机制进行更深入的基础和临床研究。
{"title":"Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies.","authors":"Xingyu Zhang, Jiangyu Wang, Zhentao Zhang, Keqiang Ye","doi":"10.1186/s40035-024-00429-6","DOIUrl":"10.1186/s40035-024-00429-6","url":null,"abstract":"<p><p>The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"40"},"PeriodicalIF":10.8,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11302116/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141898315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration. DNase II 缺乏症诱导的神经元双链 DNA 积累推动了 tau 磷酸化和神经退行性变。
IF 10.8 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-08-02 DOI: 10.1186/s40035-024-00427-8
Ling-Jie Li, Xiao-Ying Sun, Ya-Ru Huang, Shuai Lu, Yu-Ming Xu, Jing Yang, Xi-Xiu Xie, Jie Zhu, Xiao-Yun Niu, Dan Wang, Shi-Yu Liang, Xiao-Yu Du, Sheng-Jie Hou, Xiao-Lin Yu, Rui-Tian Liu

Background: Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified.

Methods: The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test.

Results: The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits.

Conclusions: DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.

背景:脱氧核糖核酸酶 2(DNase II)在清除细胞质双链 DNA(dsDNA)方面发挥着关键作用。缺乏 DNase II 会导致 DNA 在细胞质中积累。神经元中持续存在的dsDNA是衰老和包括阿尔茨海默病(AD)在内的神经退行性疾病的早期病理标志。然而,目前还不清楚 DNase II 和神经元胞质 dsDNA 如何影响神经发病机制。Tau过度磷酸化是阿尔茨海默病发病机制的一个关键因素。DNase II和神经元胞质dsDNA对神经元tau高磷酸化的影响仍不明确:方法:通过免疫组织化学和免疫标记法测定不同年龄WT和Tau-P301S小鼠神经元DNase II和dsDNA的水平,并通过ELISA法测定AD患者血浆中DNase II的水平。为了研究DNase II对tauopathy的影响,采用免疫标记、免疫印迹或ELISA方法评估了神经元DNase II缺陷WT小鼠、神经元DNase II缺陷Tau-P301S小鼠和神经元DNase II高表达Tau-P301S小鼠大脑中磷酸化tau、磷酸激酶、磷酸酶、突触蛋白、胶质细胞和促炎细胞因子的水平。用莫里斯水迷宫测试、Y-迷宫测试、新物体识别测试和空地测试测定小鼠的认知能力:结果:AD 患者大脑和血浆中的 DNase II 水平明显下降。在WT和Tau-P301S小鼠的神经元中,DNase II也随年龄增长而减少,同时细胞质中的dsDNA积累增加。神经元DNase II缺乏诱导的DNA积累通过上调细胞周期蛋白依赖样激酶-5(CDK5)和钙/钙调蛋白激活蛋白激酶II(CaMKII)以及下调磷酸酶蛋白磷酸酶2A(PP2A)来驱动tau磷酸化。此外,DNase II敲除分别诱导并显著加剧了WT小鼠和Tau-P301S小鼠的神经元丢失、神经炎症和认知障碍,而神经元DNase II的过表达则表现出治疗效果:结论:DNase II缺乏和细胞质dsDNA积累可启动tau磷酸化,这表明DNase II是tau相关疾病的潜在治疗靶点。
{"title":"Neuronal double-stranded DNA accumulation induced by DNase II deficiency drives tau phosphorylation and neurodegeneration.","authors":"Ling-Jie Li, Xiao-Ying Sun, Ya-Ru Huang, Shuai Lu, Yu-Ming Xu, Jing Yang, Xi-Xiu Xie, Jie Zhu, Xiao-Yun Niu, Dan Wang, Shi-Yu Liang, Xiao-Yu Du, Sheng-Jie Hou, Xiao-Lin Yu, Rui-Tian Liu","doi":"10.1186/s40035-024-00427-8","DOIUrl":"10.1186/s40035-024-00427-8","url":null,"abstract":"<p><strong>Background: </strong>Deoxyribonuclease 2 (DNase II) plays a key role in clearing cytoplasmic double-stranded DNA (dsDNA). Deficiency of DNase II leads to DNA accumulation in the cytoplasm. Persistent dsDNA in neurons is an early pathological hallmark of senescence and neurodegenerative diseases including Alzheimer's disease (AD). However, it is not clear how DNase II and neuronal cytoplasmic dsDNA influence neuropathogenesis. Tau hyperphosphorylation is a key factor for the pathogenesis of AD. The effect of DNase II and neuronal cytoplasmic dsDNA on neuronal tau hyperphosphorylation remains unclarified.</p><p><strong>Methods: </strong>The levels of neuronal DNase II and dsDNA in WT and Tau-P301S mice of different ages were measured by immunohistochemistry and immunolabeling, and the levels of DNase II in the plasma of AD patients were measured by ELISA. To investigate the impact of DNase II on tauopathy, the levels of phosphorylated tau, phosphokinase, phosphatase, synaptic proteins, gliosis and proinflammatory cytokines in the brains of neuronal DNase II-deficient WT mice, neuronal DNase II-deficient Tau-P301S mice and neuronal DNase II-overexpressing Tau-P301S mice were evaluated by immunolabeling, immunoblotting or ELISA. Cognitive performance was determined using the Morris water maze test, Y-maze test, novel object recognition test and open field test.</p><p><strong>Results: </strong>The levels of DNase II were significantly decreased in the brains and the plasma of AD patients. DNase II also decreased age-dependently in the neurons of WT and Tau-P301S mice, along with increased dsDNA accumulation in the cytoplasm. The DNA accumulation induced by neuronal DNase II deficiency drove tau phosphorylation by upregulating cyclin-dependent-like kinase-5 (CDK5) and calcium/calmodulin activated protein kinase II (CaMKII) and downregulating phosphatase protein phosphatase 2A (PP2A). Moreover, DNase II knockdown induced and significantly exacerbated neuron loss, neuroinflammation and cognitive deficits in WT and Tau-P301S mice, respectively, while overexpression of neuronal DNase II exhibited therapeutic benefits.</p><p><strong>Conclusions: </strong>DNase II deficiency and cytoplasmic dsDNA accumulation can initiate tau phosphorylation, suggesting DNase II as a potential therapeutic target for tau-associated disorders.</p>","PeriodicalId":23269,"journal":{"name":"Translational Neurodegeneration","volume":"13 1","pages":"39"},"PeriodicalIF":10.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11295666/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Translational Neurodegeneration
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1