Pub Date : 2021-09-22DOI: 10.5772/intechopen.96549
D. S. Mshelia, S. Adamu, R. Gali
Type 2 diabetes mellitus accounts for ≈90–95% of those with diabetes, about 50% of those with type 2 diabetes are unaware and it can remain undiagnosed for up to 12 years, ≥25% of people have evidence of microvascular complications at diagnosis. The consequences of diabetes can be reduced by screening and early interventions. Urinalysis as a screening test is limited by its low sensitivity ranging from 21% and 64%, though has high specificity (>98%), it has a place where no other procedure is available. Fasting plasma glucose though recommended as a universal screening and diagnostic test for diabetes mellitus, a changed in the diagnostic criteria was made when this did not give corresponding hyperglycaemic impact compared to the OGTT results, bringing a complex and variable effect on the prevalence of diabetes and on subjects diagnosed. To date the searching to finding the corresponding FPG to what is normal or IGT is still ongoing. FPG testing poorly identify early signs of dysglycaemia. This is due to the difficulty ensuring compliance with instructions about fasting, FPG represents glucose handling during the moment of fasting period only and is affected easily by short-term lifestyle changes, FPG has diurnal variation, higher in the morning than in the afternoon, these may cause serious misclassifications. OGTT do indicates the pathophysiology responsible for diabetes better as it provides information on what happens in the postprandial state when the functional capacity of pancreatic β-cell is crucial. It accurately detects changes in post-prandial glycaemia that tend to precede changes in fasting glucose. OGTT is the gold standard for the diagnosis of GDM and the only means of identifying people with IGT and WHO placed emphasis on the OGTT as the “gold standard”, in diagnosis of dysglycaemia. Reproducibility can be improved remarkably when patient preparation, a forvarable atmosphere during the procedure, standardized sampling protocol, sample handling, and analysis are given high attention. Measurement of A1c equals the assessment of hundreds of FPG levels and also captures postprandial glucose peaks. Regrettably, it has been shown that 44% of people with newly diagnosed diabetes with OGTT had A1c <6.0% and that a stronger correlations with plasma glucose is better in subjects with known diabetes, but not in the general population. A1C values just above the upper limits of normal require OGTT to be correctly interpreted; it is not available in many part of the world. Finally, A1c can not diagnose IFG and IGT to disclose high-risk subjects for diabetes. In conclusion an OGTT is undeniably the best test in investigation of dysglycaemia, either with the intention of testing for pre-diabetes, type 2 diabetes, or for gestational diabetes mellitus.
{"title":"Oral Glucose Tolerance Test (OGTT): Undeniably the First Choice Investigation of Dysglycaemia, Reproducibility can be Improved","authors":"D. S. Mshelia, S. Adamu, R. Gali","doi":"10.5772/intechopen.96549","DOIUrl":"https://doi.org/10.5772/intechopen.96549","url":null,"abstract":"Type 2 diabetes mellitus accounts for ≈90–95% of those with diabetes, about 50% of those with type 2 diabetes are unaware and it can remain undiagnosed for up to 12 years, ≥25% of people have evidence of microvascular complications at diagnosis. The consequences of diabetes can be reduced by screening and early interventions. Urinalysis as a screening test is limited by its low sensitivity ranging from 21% and 64%, though has high specificity (>98%), it has a place where no other procedure is available. Fasting plasma glucose though recommended as a universal screening and diagnostic test for diabetes mellitus, a changed in the diagnostic criteria was made when this did not give corresponding hyperglycaemic impact compared to the OGTT results, bringing a complex and variable effect on the prevalence of diabetes and on subjects diagnosed. To date the searching to finding the corresponding FPG to what is normal or IGT is still ongoing. FPG testing poorly identify early signs of dysglycaemia. This is due to the difficulty ensuring compliance with instructions about fasting, FPG represents glucose handling during the moment of fasting period only and is affected easily by short-term lifestyle changes, FPG has diurnal variation, higher in the morning than in the afternoon, these may cause serious misclassifications. OGTT do indicates the pathophysiology responsible for diabetes better as it provides information on what happens in the postprandial state when the functional capacity of pancreatic β-cell is crucial. It accurately detects changes in post-prandial glycaemia that tend to precede changes in fasting glucose. OGTT is the gold standard for the diagnosis of GDM and the only means of identifying people with IGT and WHO placed emphasis on the OGTT as the “gold standard”, in diagnosis of dysglycaemia. Reproducibility can be improved remarkably when patient preparation, a forvarable atmosphere during the procedure, standardized sampling protocol, sample handling, and analysis are given high attention. Measurement of A1c equals the assessment of hundreds of FPG levels and also captures postprandial glucose peaks. Regrettably, it has been shown that 44% of people with newly diagnosed diabetes with OGTT had A1c <6.0% and that a stronger correlations with plasma glucose is better in subjects with known diabetes, but not in the general population. A1C values just above the upper limits of normal require OGTT to be correctly interpreted; it is not available in many part of the world. Finally, A1c can not diagnose IFG and IGT to disclose high-risk subjects for diabetes. In conclusion an OGTT is undeniably the best test in investigation of dysglycaemia, either with the intention of testing for pre-diabetes, type 2 diabetes, or for gestational diabetes mellitus.","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82456149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-08-19DOI: 10.5772/INTECHOPEN.99555
D. Buowari
Lifestyle medicine is a medical specialty that involves the use of lifestyle in the prevention and management of non-communicable diseases like diabetes mellitus and cardiovascular diseases. Recent studies have shown that diabetes mellitus can be prevented following lifestyle modifications. Lifestyle medicine is a branch of medicine that promotes lifestyle modifications as a way of life. This includes promoting healthy eating which includes a whole plant-based diet, low fat, low sugar and low salt. It also includes exercises, sleeping healthy and reducing stress. This is involved in the management of diabetes mellitus. Diabetic management is expensive especially in low and middle-income countries where health insurance is not available for the entire populace and diabetics have to pay out of pocket for their medications.
{"title":"The Role of Lifestyle Medicine in the Management of Diabetes Mellitus","authors":"D. Buowari","doi":"10.5772/INTECHOPEN.99555","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.99555","url":null,"abstract":"Lifestyle medicine is a medical specialty that involves the use of lifestyle in the prevention and management of non-communicable diseases like diabetes mellitus and cardiovascular diseases. Recent studies have shown that diabetes mellitus can be prevented following lifestyle modifications. Lifestyle medicine is a branch of medicine that promotes lifestyle modifications as a way of life. This includes promoting healthy eating which includes a whole plant-based diet, low fat, low sugar and low salt. It also includes exercises, sleeping healthy and reducing stress. This is involved in the management of diabetes mellitus. Diabetic management is expensive especially in low and middle-income countries where health insurance is not available for the entire populace and diabetics have to pay out of pocket for their medications.","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74571801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-22DOI: 10.5772/INTECHOPEN.95515
S. Ferdousi, Phurpa Gyeltshen
Type 2 Diabetes Mellitus is associated with both macro- and microvascular complications. One among the latter, is cardiovascular autonomic neuropathy (CAN). CAN is attributed to cardiac arrhythmias and sudden death. Underlying pathogenesis of cardiac autonomic neuropathy is chronic hyperglycemia induced oxidative stress causing neuronal necrosis, apoptosis and death, leading to the sympathetic and parasympathetic nerve dysfunction. The balance between sympathetic and parasympathetic nervous system is reflected by heart rate variability (HRV). HRV describes “the variations of both instantaneous heart rate and R-R intervals which in turn reflects the cardiac autonomic nervous control”. HRV measured at rest is a marker of autonomic nerve function status. Thus, HRV test is recommended to diagnose diabetic CAN. Time domain parameters predominantly reflect overall autonomic activity and parasympathetic nervous system (PNS) modulations. Frequency domain parameters either reflect, sympathetic nervous system (SNS) activity, PNS activity, or the balance between the two activities. Nonlinear HRV indices marks PNS influences, SNS influences and sympatho-vagal balance. Almost all these HRV parameters are remarkably reduced in T2DM due to cardiac autonomic dysfunction. HRV is an important simple and noninvasive diagnostic tool to detect CAN.
{"title":"Type 2 Diabetes Mellitus: Cardiovascular Autonomic Neuropathy and Heart Rate Variability","authors":"S. Ferdousi, Phurpa Gyeltshen","doi":"10.5772/INTECHOPEN.95515","DOIUrl":"https://doi.org/10.5772/INTECHOPEN.95515","url":null,"abstract":"Type 2 Diabetes Mellitus is associated with both macro- and microvascular complications. One among the latter, is cardiovascular autonomic neuropathy (CAN). CAN is attributed to cardiac arrhythmias and sudden death. Underlying pathogenesis of cardiac autonomic neuropathy is chronic hyperglycemia induced oxidative stress causing neuronal necrosis, apoptosis and death, leading to the sympathetic and parasympathetic nerve dysfunction. The balance between sympathetic and parasympathetic nervous system is reflected by heart rate variability (HRV). HRV describes “the variations of both instantaneous heart rate and R-R intervals which in turn reflects the cardiac autonomic nervous control”. HRV measured at rest is a marker of autonomic nerve function status. Thus, HRV test is recommended to diagnose diabetic CAN. Time domain parameters predominantly reflect overall autonomic activity and parasympathetic nervous system (PNS) modulations. Frequency domain parameters either reflect, sympathetic nervous system (SNS) activity, PNS activity, or the balance between the two activities. Nonlinear HRV indices marks PNS influences, SNS influences and sympatho-vagal balance. Almost all these HRV parameters are remarkably reduced in T2DM due to cardiac autonomic dysfunction. HRV is an important simple and noninvasive diagnostic tool to detect CAN.","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82835792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-25DOI: 10.1201/9780429507250-10
R. Fried, R. Carlton
{"title":"Selected Botanicals and Plant Products That Lower Blood Glucose (Continued)","authors":"R. Fried, R. Carlton","doi":"10.1201/9780429507250-10","DOIUrl":"https://doi.org/10.1201/9780429507250-10","url":null,"abstract":"","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88978062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Importance of Monitoring Blood Sugar and Other “Vital Signs”","authors":"R. Fried, R. Carlton","doi":"10.1201/9780429507250-6","DOIUrl":"https://doi.org/10.1201/9780429507250-6","url":null,"abstract":"","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"180 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76765455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Glycation End Products—A Special Hazard in Diabetes","authors":"R. Fried, R. Carlton","doi":"10.1201/9780429507250-7","DOIUrl":"https://doi.org/10.1201/9780429507250-7","url":null,"abstract":"","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79431905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2018-10-25DOI: 10.1201/9780429507250-14
R. Fried, R. Carlton
{"title":"Additional Supplements That Support Glycemic Control and Reduce Chronic Inflammation","authors":"R. Fried, R. Carlton","doi":"10.1201/9780429507250-14","DOIUrl":"https://doi.org/10.1201/9780429507250-14","url":null,"abstract":"","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"47 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86330425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mode of Action of Selected Botanicals That Lower Blood Glucose","authors":"R. Fried, R. Carlton","doi":"10.1201/9780429507250-9","DOIUrl":"https://doi.org/10.1201/9780429507250-9","url":null,"abstract":"","PeriodicalId":23459,"journal":{"name":"Type 2 Diabetes - From Pathophysiology to Cyber Systems","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73618853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}