首页 > 最新文献

Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)最新文献

英文 中文
Parkinson sEMG signal prediction and generation with Neural Networks 帕金森表面肌电信号的神经网络预测与生成
Pub Date : 2021-06-15 DOI: 10.5753/SBCAS.2021.16102
R. A. Zanini, E. Colombini
Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by symptoms like resting and action tremors, which cause severe impairments to the patient’s life. Recently, many assistance techniques have been proposed to minimize the disease’s impact on patients’ life. However, most of these methods depend on data from PD’s surface electromyography (sEMG), which is scarce. In this work, we propose the first methods, based on Neural Networks, for predicting, generating, and transferring the style of patient-specific PD sEMG tremor signals. This dissertation contributes to the area by i) comparing different NN models for predicting PD sEMG signals to anticipate resting tremor patterns ii) proposing the first approach based on Deep Convolutional Generative Adversarial Networks (DCGANs) to generate PD’s sEMG tremor signals; iii) applying Style Transfer (ST) for augmenting PD’s sEMG signals with publicly available datasets of non-PD subjects; iv) proposing metrics for evaluating the PD’s signal characterization in sEMG signals. These new data created by our methods could validate treatment approaches on different movement scenarios, contributing to the development of new techniques for tremor suppression in patients.
帕金森病(PD)是一种神经退行性疾病,其特征是静息性震颤和运动性震颤等症状,会对患者的生活造成严重损害。最近,许多辅助技术被提出,以尽量减少疾病对患者生活的影响。然而,这些方法大多依赖于PD的表面肌电图(sEMG)数据,这是稀缺的。在这项工作中,我们提出了第一种基于神经网络的方法,用于预测、生成和传输患者特异性PD肌电震颤信号的类型。本文通过比较不同的神经网络模型来预测PD表面肌电信号以预测静息震颤模式,提出了基于深度卷积生成对抗网络(dcgan)的第一种方法来生成PD表面肌电信号震颤信号;iii)应用风格转移(ST),利用非PD受试者的公开数据集增强PD的表面肌电信号;iv)提出评估表面肌电信号中PD信号特征的指标。通过我们的方法创建的这些新数据可以验证不同运动场景的治疗方法,有助于开发新的震颤抑制技术。
{"title":"Parkinson sEMG signal prediction and generation with Neural Networks","authors":"R. A. Zanini, E. Colombini","doi":"10.5753/SBCAS.2021.16102","DOIUrl":"https://doi.org/10.5753/SBCAS.2021.16102","url":null,"abstract":"Parkinson’s Disease (PD) is a neurodegenerative disorder characterized by symptoms like resting and action tremors, which cause severe impairments to the patient’s life. Recently, many assistance techniques have been proposed to minimize the disease’s impact on patients’ life. However, most of these methods depend on data from PD’s surface electromyography (sEMG), which is scarce. In this work, we propose the first methods, based on Neural Networks, for predicting, generating, and transferring the style of patient-specific PD sEMG tremor signals. This dissertation contributes to the area by i) comparing different NN models for predicting PD sEMG signals to anticipate resting tremor patterns ii) proposing the first approach based on Deep Convolutional Generative Adversarial Networks (DCGANs) to generate PD’s sEMG tremor signals; iii) applying Style Transfer (ST) for augmenting PD’s sEMG signals with publicly available datasets of non-PD subjects; iv) proposing metrics for evaluating the PD’s signal characterization in sEMG signals. These new data created by our methods could validate treatment approaches on different movement scenarios, contributing to the development of new techniques for tremor suppression in patients.","PeriodicalId":236085,"journal":{"name":"Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123992913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Anais do XXXIV Concurso de Teses e Dissertações da SBC (CTD-SBC 2021)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1