首页 > 最新文献

2020 International Conference on Computer Science and Software Engineering (CSASE)最新文献

英文 中文
Facial Features Extraction Using LBP for Human Age Estimation Based on SVM Classifier 基于LBP的人脸特征提取与SVM分类器年龄估计
Pub Date : 2020-04-01 DOI: 10.1109/CSASE48920.2020.9142085
N. F. Hasan, S. Q. Mahdi
Research on age estimation witnessed increasing attention due to the demand for its applications. The age estimation has an essential role in preventing under-age persons from performing adult activities. The proposed age estimation technique is carried out through several stages; preprocessing, feature extraction and then age classification. In this paper, the Local Binary Pattern (LBP) algorithm is adopted to extract the face features focusing on selecting the best possible combination among all the features produced from the LBP algorithm. Feature Selection Method (FSM) is employed to increase the accuracy. FSM yields better results compared to other techniques’ results. Support Vector Machine (SVM) is used to classify the tested person image and assign that person to the related age. Results conducted using MATLAB produced accuracy of 93.81% with FSM technique compared to 81.61% without it. When damaged images are excluded from the database used for training, the accuracy is increased to 94.57%.
由于对年龄估计的应用需求,对年龄估计的研究越来越受到重视。年龄估计在防止未成年人从事成人活动方面具有重要作用。所提出的年龄估计技术分几个阶段进行;预处理,特征提取,年龄分类。本文采用局部二值模式(Local Binary Pattern, LBP)算法提取人脸特征,重点从LBP算法产生的所有特征中选择可能的最佳组合。采用特征选择方法(FSM)来提高准确率。与其他技术相比,FSM产生更好的结果。使用支持向量机(SVM)对被测人物图像进行分类,并将该人物分配到相关的年龄。结果表明,使用FSM技术的准确率为93.81%,而不使用FSM技术的准确率为81.61%。当将受损图像从用于训练的数据库中排除后,准确率提高到94.57%。
{"title":"Facial Features Extraction Using LBP for Human Age Estimation Based on SVM Classifier","authors":"N. F. Hasan, S. Q. Mahdi","doi":"10.1109/CSASE48920.2020.9142085","DOIUrl":"https://doi.org/10.1109/CSASE48920.2020.9142085","url":null,"abstract":"Research on age estimation witnessed increasing attention due to the demand for its applications. The age estimation has an essential role in preventing under-age persons from performing adult activities. The proposed age estimation technique is carried out through several stages; preprocessing, feature extraction and then age classification. In this paper, the Local Binary Pattern (LBP) algorithm is adopted to extract the face features focusing on selecting the best possible combination among all the features produced from the LBP algorithm. Feature Selection Method (FSM) is employed to increase the accuracy. FSM yields better results compared to other techniques’ results. Support Vector Machine (SVM) is used to classify the tested person image and assign that person to the related age. Results conducted using MATLAB produced accuracy of 93.81% with FSM technique compared to 81.61% without it. When damaged images are excluded from the database used for training, the accuracy is increased to 94.57%.","PeriodicalId":254581,"journal":{"name":"2020 International Conference on Computer Science and Software Engineering (CSASE)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124994124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Enhancement Framework of Semantic Query Expansion Using Mapped Ontology 基于映射本体的语义查询扩展增强框架
Pub Date : 2020-04-01 DOI: 10.1109/CSASE48920.2020.9142093
Bazeer Ahamed B, R. Najimaldeen, Y. Duraisamy
In the present information age, providing correct information to the query with a limited concept is a challenging task. The modern adaptive Information Retrieval (IR) system is needed to provide valid information. Ontology-based on IR can provide a better solution. Ontology is a perception of shared conceptualization, represented by classes, properties, and objects. Ontology mapping offers a solution to integrate inter-domain knowledge. This paper presents a method for using ontologies to handle inter-domain query in information retrieval. Using ontology in IR for Query Expansion (QE) and document ranking seems to be the ultimate goal. The Multi-Domain Specific Ontology Mapping (MDOM) proposes the concepts derived from ontology for query expansion and information retrieval. The result shows the improvement in terms of better document ranking.
在当前的信息时代,如何在有限的概念下为查询提供正确的信息是一项具有挑战性的任务。现代自适应信息检索系统需要提供有效的信息。基于IR的本体可以提供更好的解决方案。本体是对共享概念化的感知,由类、属性和对象表示。本体映射为跨领域知识集成提供了一种解决方案。提出了一种利用本体处理信息检索领域间查询的方法。在IR中使用本体进行查询扩展(QE)和文档排序似乎是最终目标。多领域特定本体映射(MDOM)提出了从本体派生的概念,用于查询扩展和信息检索。结果表明,在更好的文档排名方面有所改善。
{"title":"Enhancement Framework of Semantic Query Expansion Using Mapped Ontology","authors":"Bazeer Ahamed B, R. Najimaldeen, Y. Duraisamy","doi":"10.1109/CSASE48920.2020.9142093","DOIUrl":"https://doi.org/10.1109/CSASE48920.2020.9142093","url":null,"abstract":"In the present information age, providing correct information to the query with a limited concept is a challenging task. The modern adaptive Information Retrieval (IR) system is needed to provide valid information. Ontology-based on IR can provide a better solution. Ontology is a perception of shared conceptualization, represented by classes, properties, and objects. Ontology mapping offers a solution to integrate inter-domain knowledge. This paper presents a method for using ontologies to handle inter-domain query in information retrieval. Using ontology in IR for Query Expansion (QE) and document ranking seems to be the ultimate goal. The Multi-Domain Specific Ontology Mapping (MDOM) proposes the concepts derived from ontology for query expansion and information retrieval. The result shows the improvement in terms of better document ranking.","PeriodicalId":254581,"journal":{"name":"2020 International Conference on Computer Science and Software Engineering (CSASE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128465318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
期刊
2020 International Conference on Computer Science and Software Engineering (CSASE)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1