In this study, we semi-synthesized nineteen new derivatives of bakuchiol and evaluated their anti-breast cancer properties. Among them, compound 19 stood out as the most effective demonstrating significant cytotoxic activity against MDA-MB-231 cells, with IC50 values of 4.13 μM. Notably, the cytotoxicity of compound 19 towards normal mouse hepatocytes (Aml-12) cells was considerably lower, with IC50 values of 31.60 μM. Our findings indicated that compound 19 triggered apoptosis in MDA-MB-231 cells by increasing the levels of Bax and Cyt C, reducing Bcl-2, and initiating caspase-3 cleavage. It also suppressed the invasion and migration of MDA-MB-231 cells by down-regulating MMP-2 and MMP-9 expression and up-regulating E-cadherin protein levels. We further demonstrated that compound 19 significantly suppressed tumor growth in nude mice xenografted with MDA-MB-231 cells.
Epidermal growth factor receptor (EGFR) and histone deacetylase 3 (HDAC3) synergistically drive malignant progression in triple-negative breast cancer (TNBC). In this study, a series of N-benzyl-2-fluorobenzamide derivatives (11-43) were identified as EGFR/HDAC3 dual-target inhibitors. Among them, compound 38 exhibited the most promising activity, with IC₅₀ values of 20.34 nM and 1.09 μM against EGFR and HDAC3, respectively. Molecular modeling revealed that the 2-fluorobenzamide moiety of 38 chelates with Zn2+ in the active channel of HDAC3, while the 4-fluorobenzyl group occupies the ATP-binding pocket of EGFR, exercising a dual-target binding function. In vitro experiments demonstrated that 38 exhibited superior anti-proliferative activity (IC₅₀ = 1.98 μM) against MDA-MB-231 cells compared to chidamide (IC₅₀ = 24.37 μM), inducing 74.15 % inhibition of cell migration and 57.4 % late-stage apoptosis. In vivo studies revealed that 38 (30 mg/kg/day) suppressed tumor growth by 34.78 % without significant toxicity. Collectively, 38 represents a novel dual EGFR/HDAC3 inhibitor that shows promising potential for providing new therapeutic insights into TNBC treatment.
12-O-alkyl, acyl, and phenylcarbamoyl, and 11-bromo-7-oxo analogues were prepared from pisiferic acid from Chamaecyparis pisifera, and evaluated anti-adipogenic activity. Among them, pisiferic acid and methyl 12-O-phenylcarbamoylpisiferic acid methyl ester showed relatively high anti-adipogenic effect in 3T3-L1 adipocytes and should be thought to be potential candidates for anti-obesity drug.
Ulcerative colitis (UC) is considered as one of the most prevalent inflammatory bowel diseases (IBDs), which increases risks for colectomy and colorectal cancer. However, due to moderate efficiency and potential side effects of first-line drugs, it is desirable to develop more efficient anti-UC agents. The natural peptide Melittin, which is the main active ingredient of bee venom, is considered as a potential scaffold for the development of anti-UC drugs. Nevertheless, as a linear amphipathic peptide, Melittin could be degraded by various proteases, suffering from poor stability and short half-lives. Previous studies on structural optimization or the potential of Melittin-derived peptides for anti-UC applications still remain limited. In this study, the stability-guided optimization and anti-UC evaluation were conducted on Melittin. The robust synthetic strategy, in vivo anti-UC activity, and anti-inflammatory mechanism were investigated. Compared with Melittin, the derived peptides represented by PCJ-675 were found to exhibit improved proteolytic stability. In the dextran sulfate sodium (DSS)-induced UC mice model, PCJ-675 could significantly alleviate both colon shortening and suppress inflammation symptoms in colon tissue. The western blotting and biochemical indicators suggested that the oral administration of PCJ-675 could protect the colon in colitis mice by inhibiting both the excessive activation of the inflammation-related TLR4/NF-κB pathway and the overexpression of pro-inflammatory cytokines (eg, IL-1β, IL-6, and TNF-α). Collectively, this study not only stablished robust strategies to improve the stability and anti-UC potential of Melittin, but also provided valuable references for the future development of natural cytotoxic peptides based anti-UC agents.
Ginsenosides, the pharmacologically active components of Panax ginseng, are widely used in herbal medicine and reportedly exert diverse biological effects, including anticancer, anti-inflammatory, and neuroprotective activities. However, their pharmacological mechanisms remain poorly understood, owing to the lack of chemical probes suitable for in vivo analyses. Herein, we report the development of a 11C radiolabeling of 20(S)-protopanaxadiol (PPD), a major aglycone-type active ginsenoside metabolite, for positron emission tomography (PET) imaging. For the 11C labeling of PPD, we focused on the terminal vinyl methyl group of the dammarane-type triterpene backbone, a common structural element found in ginsenosides. A boronic precursor applicable for rapid 11C-methylation was efficiently synthesized via steps focusing on the controlled cross-metathesis of an internal olefin. The subsequent Pd(0)-mediated rapid 11C-methylation was conducted in N,N-dimethylformamide (DMF)/H₂O using [Pd₂(dba)₃], P(o-tolyl)₃, and sodium ascorbate, which functioned as a base and a radical scavenger. After formulation, the resulting [11C]PPD was obtained in a decay-corrected radiochemical yield of 15 ± 2 % (n = 3), with a total radioactivity of 1.0 ± 0.3 GBq (n = 3) and molar activity of 124 ± 7 GBq/μmol (n = 3). Radiochemical purity was ≥99 %, and the total synthesis time was 29 min. Using [11C]PPD, PET imaging of the brains of healthy rats and abdomens of healthy mice demonstrated low brain uptake and pronouncedly clear hepatobiliary excretion of radiolabeled species. These findings may provide a foundation for the general labeling of ginsenoside structures with 11C radioisotopes, thereby enabling systematic in vivo pharmacokinetic analyses of PPD derivatives to advance ginsenoside-based drug development.

