首页 > 最新文献

Text Mining with Machine Learning最新文献

英文 中文
Nearest Neighbors 最近的邻居
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-6
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Nearest Neighbors","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-6","DOIUrl":"https://doi.org/10.1201/9780429469275-6","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"37 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124162638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to R R简介
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-2
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Introduction to R","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-2","DOIUrl":"https://doi.org/10.1201/9780429469275-2","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"31 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127629607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Random Forest 随机森林
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-8
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Random Forest","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-8","DOIUrl":"https://doi.org/10.1201/9780429469275-8","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126357416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Adaboost 演算法
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-9
Jan Žižka, F. Dařena, Arnošt Svoboda
Let’s now look at the AdaBoost setup in more detail. • Loss ` = exp (exponential loss). It is also common to use the logistic loss ln(1 + exp(·)), but for simplicity we’ll use the standard choice. • Examples ((xi, yi))i=1 with xi ∈ X and yi ∈ {−1,+1}. The main thing to note is that X is just some opaque set, we are not assuming vector space structure, and can not form inner products 〈w, x〉. • Elementary hypotheses H = (hj)j=1, where hj : X → [−1,+1] for each j. Rather than interacting with examples in X directly, boosting algorithms embed them in a vector space via these functions H. For example, a vector v ∈ R is now interpreted as a linear combination of elements of H, and predictions on a new example x ∈ X are computed as x 7→ ∑
现在让我们更详细地看看AdaBoost的设置。•损失= exp(指数损失)。逻辑损失ln(1 + exp(·))也很常见,但为了简单起见,我们将使用标准选择。•示例((xi, yi))i=1,其中xi∈X, yi∈{−1,+1}。主要需要注意的是,X只是一个不透明的集合,我们没有假设向量空间结构,也不能形成内积< w, X >。•基本假设H = (hj)j=1,其中每个j的hj: X→[−1,+1]。增强算法不是直接与X中的示例交互,而是通过这些函数H将它们嵌入到向量空间中。例如,向量v∈R现在被解释为H元素的线性组合,并且对新示例X∈X的预测计算为X 7→∑
{"title":"Adaboost","authors":"Jan Žižka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-9","DOIUrl":"https://doi.org/10.1201/9780429469275-9","url":null,"abstract":"Let’s now look at the AdaBoost setup in more detail. • Loss ` = exp (exponential loss). It is also common to use the logistic loss ln(1 + exp(·)), but for simplicity we’ll use the standard choice. • Examples ((xi, yi))i=1 with xi ∈ X and yi ∈ {−1,+1}. The main thing to note is that X is just some opaque set, we are not assuming vector space structure, and can not form inner products 〈w, x〉. • Elementary hypotheses H = (hj)j=1, where hj : X → [−1,+1] for each j. Rather than interacting with examples in X directly, boosting algorithms embed them in a vector space via these functions H. For example, a vector v ∈ R is now interpreted as a linear combination of elements of H, and predictions on a new example x ∈ X are computed as x 7→ ∑","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129752473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Deep Learning 深度学习
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-11
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Deep Learning","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-11","DOIUrl":"https://doi.org/10.1201/9780429469275-11","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"17 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127677003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Support Vector Machines 支持向量机
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-10
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Support Vector Machines","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-10","DOIUrl":"https://doi.org/10.1201/9780429469275-10","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"81 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125335127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification 分类
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-4
Jan Žižka, F. Dařena, Arnošt Svoboda
{"title":"Classification","authors":"Jan Žižka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-4","DOIUrl":"https://doi.org/10.1201/9780429469275-4","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114067088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature Selection 特征选择
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-14
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Feature Selection","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-14","DOIUrl":"https://doi.org/10.1201/9780429469275-14","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124244362","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structured Text Representations 结构化文本表示
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-3
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Structured Text Representations","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-3","DOIUrl":"https://doi.org/10.1201/9780429469275-3","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128695315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Introduction to Text Mining with Machine Learning 机器学习文本挖掘导论
Pub Date : 2019-10-31 DOI: 10.1201/9780429469275-1
J. Zizka, F. Dařena, Arnošt Svoboda
{"title":"Introduction to Text Mining with Machine Learning","authors":"J. Zizka, F. Dařena, Arnošt Svoboda","doi":"10.1201/9780429469275-1","DOIUrl":"https://doi.org/10.1201/9780429469275-1","url":null,"abstract":"","PeriodicalId":258194,"journal":{"name":"Text Mining with Machine Learning","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115551559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Text Mining with Machine Learning
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1