Pub Date : 2024-08-22DOI: 10.1016/j.cattod.2024.115017
Maynara L.A. Santos, Henrique P. Pacheco, Fabio S. Toniolo
Ethanol has captured a lot of interest from the industry in recent years due to its sustainable appeal, being obtained through the process of biomass fermentation. Not only its application in the energy sector as a potent fuel, but its conversion to higher added value products has been a commercial highlight. In this work, we sought to synthesize a new mixed catalyst MgxAlOy-SiO2 to investigate its performance in the upgrading of ethanol to a product of significant relevance, particularly for the plastics and polymers industry, namely1,3-butadiene. The molar ratio of Mg:Al:Si in the catalyst was tuned, revealing a remarkable impact on the selectivity of the reaction products. For the production of 1,3-butadiene, the optimal catalyst composition was determined to be 3:1:1, exhibiting a selectivity of 23 % at 723 K. This composition offered a favorable amount of acid and basic active sites, indicated by the acid to basic sites density ratio of 0.109, with medium basic sites predominantly represented. This arrangement is believed to have facilitated dehydrogenation, condensation, and dehydration reactions, each playing a crucial role in the overall process.
{"title":"Tuning acid and basic features on MgxAlOy-SiO2 impacted ethanol upgrading to 1,3-butadiene","authors":"Maynara L.A. Santos, Henrique P. Pacheco, Fabio S. Toniolo","doi":"10.1016/j.cattod.2024.115017","DOIUrl":"10.1016/j.cattod.2024.115017","url":null,"abstract":"<div><p>Ethanol has captured a lot of interest from the industry in recent years due to its sustainable appeal, being obtained through the process of biomass fermentation. Not only its application in the energy sector as a potent fuel, but its conversion to higher added value products has been a commercial highlight. In this work, we sought to synthesize a new mixed catalyst Mg<sub>x</sub>AlO<sub>y</sub>-SiO<sub>2</sub> to investigate its performance in the upgrading of ethanol to a product of significant relevance, particularly for the plastics and polymers industry, namely1,3-butadiene. The molar ratio of Mg:Al:Si in the catalyst was tuned, revealing a remarkable impact on the selectivity of the reaction products. For the production of 1,3-butadiene, the optimal catalyst composition was determined to be 3:1:1, exhibiting a selectivity of 23 % at 723 K. This composition offered a favorable amount of acid and basic active sites, indicated by the acid to basic sites density ratio of 0.109, with medium basic sites predominantly represented. This arrangement is believed to have facilitated dehydrogenation, condensation, and dehydration reactions, each playing a crucial role in the overall process.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 115017"},"PeriodicalIF":5.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-22DOI: 10.1016/j.cattod.2024.115010
Thaís Schmitz , Arthur Motta de Andrade , Francieli Martins Mayer , Isabel Cristina Tessaro , Nilson Romeu Marcilio , Maria do Carmo Rangel , Anderson Joel Schwanke
This work aimed at the green synthesis of MWW zeolites using rice husk silica as an alternative raw material. It was also performed a post-synthesis desilication procedure with NaOH and CTABr aiming to obtain MWW zeolites with improved accessibility. The set of characterization techniques (XRD, 27Al MAS NMR, N2 physisorption, SEM, TEM, and Pyridine-FTIR) revealed the phase purity and combined structure of micro-mesopores after desilication. The zeolites were evaluated as catalysts for polystyrene pyrolysis, producing benzene, toluene and ethylbenzene, besides styrene monomers, and dimers. Without any catalyst, polystyrene produces only styrene monomers, dimers and trimers. The desilication increases the amount of Brønsted and Lewis sites and the external area, catalyzing the production of polyaromatics and naphthalene derivatives. The activation energy decreased for the catalyzed reactions, reflecting other reaction pathways.
{"title":"Catalytic pyrolysis of polystyrene over rice husk silica-derived traditional and hierarchical green MWW zeolites","authors":"Thaís Schmitz , Arthur Motta de Andrade , Francieli Martins Mayer , Isabel Cristina Tessaro , Nilson Romeu Marcilio , Maria do Carmo Rangel , Anderson Joel Schwanke","doi":"10.1016/j.cattod.2024.115010","DOIUrl":"10.1016/j.cattod.2024.115010","url":null,"abstract":"<div><p>This work aimed at the green synthesis of MWW zeolites using rice husk silica as an alternative raw material. It was also performed a post-synthesis desilication procedure with NaOH and CTABr aiming to obtain MWW zeolites with improved accessibility. The set of characterization techniques (XRD, <sup>27</sup>Al MAS NMR, N<sub>2</sub> physisorption, SEM, TEM, and Pyridine-FTIR) revealed the phase purity and combined structure of micro-mesopores after desilication. The zeolites were evaluated as catalysts for polystyrene pyrolysis, producing benzene, toluene and ethylbenzene, besides styrene monomers, and dimers. Without any catalyst, polystyrene produces only styrene monomers, dimers and trimers. The desilication increases the amount of Brønsted and Lewis sites and the external area, catalyzing the production of polyaromatics and naphthalene derivatives. The activation energy decreased for the catalyzed reactions, reflecting other reaction pathways.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 115010"},"PeriodicalIF":5.2,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049610","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.cattod.2024.114992
Paulo R.A.F. Garcia , Paloma Vinaches , João-Paulo Zerba , Tiago A. Kalile , Amélie Rochet , Sibele B. Pergher , Florian Meneau
Understanding the dynamics of zeolite formation is key to synthesising high-quality zeolitic materials with controllable properties, in order to develop more efficient and performant materials. X-ray photon correlation spectroscopy (XPCS) using coherent X-rays offers new possibilities for in situ observation of nano to micron-scale fluctuation dynamics during crystal growth. An in situ cell, which is capable of collecting time-resolved coherent X-ray scattering data under hydrothermal conditions has been developed and used to study, by in situ XPCS combined with small and wide angle X-ray scattering, zeolite formation and dynamics. Analysis of the results using two-time correlations enables to accurately identify the successive growth and crystallisation steps, revealing the dissolution process of the LTA topology during the SOD growth. This approach opens a powerful new avenue for studying the dynamics of nanomaterials formation, phase transitions and growth processes under in situ conditions that will enable profound insights into the nanoscale synthesis mechanisms.
了解沸石形成的动力学是合成具有可控特性的高质量沸石材料的关键,从而开发出更高效、更高性能的材料。使用相干 X 射线的 X 射线光子相关光谱(XPCS)为现场观察晶体生长过程中纳米到微米尺度的波动动态提供了新的可能性。我们开发了一种能够在水热条件下收集时间分辨相干 X 射线散射数据的原位单元,并通过原位 XPCS 结合小角和广角 X 射线散射来研究沸石的形成和动力学。利用双时间相关性对结果进行分析,可准确识别连续的生长和结晶步骤,揭示 SOD 生长过程中 LTA 拓扑的溶解过程。这种方法为研究原位条件下纳米材料的形成、相变和生长过程的动力学开辟了一条强大的新途径,有助于深入了解纳米级合成机制。
{"title":"Monitoring the dynamics of nanozeolite formation by combined in situ coherent small angle X-ray scattering techniques","authors":"Paulo R.A.F. Garcia , Paloma Vinaches , João-Paulo Zerba , Tiago A. Kalile , Amélie Rochet , Sibele B. Pergher , Florian Meneau","doi":"10.1016/j.cattod.2024.114992","DOIUrl":"10.1016/j.cattod.2024.114992","url":null,"abstract":"<div><p>Understanding the dynamics of zeolite formation is key to synthesising high-quality zeolitic materials with controllable properties, in order to develop more efficient and performant materials. X-ray photon correlation spectroscopy (XPCS) using coherent X-rays offers new possibilities for <em>in situ</em> observation of nano to micron-scale fluctuation dynamics during crystal growth. An <em>in situ</em> cell, which is capable of collecting time-resolved coherent X-ray scattering data under hydrothermal conditions has been developed and used to study, by <em>in situ</em> XPCS combined with small and wide angle X-ray scattering, zeolite formation and dynamics. Analysis of the results using two-time correlations enables to accurately identify the successive growth and crystallisation steps, revealing the dissolution process of the LTA topology during the SOD growth. This approach opens a powerful new avenue for studying the dynamics of nanomaterials formation, phase transitions and growth processes under <em>in situ</em> conditions that will enable profound insights into the nanoscale synthesis mechanisms.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"443 ","pages":"Article 114992"},"PeriodicalIF":5.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920586124004863/pdfft?md5=52dbec7b52817e9337eec905270badda&pid=1-s2.0-S0920586124004863-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142012749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.cattod.2024.114995
Lourdes A. Etshindo , Célia Sousa , Priscila Tamiasso-Martinhon , Marcos V. Colaço , Alexandre R. Camara , Angela S. Rocha
The possibility of SnO2 incorporation and immobilization as films forming composites opens new perspectives for TiO2 to profit visible light and to facilitate the photocatalytic process, respectively. In this study, 0 %, 1 % and 10 % wt. of SnO2 was incorporated into TiO2 (SnO2-TiO2) by coprecipitation in a sol-gel method by ammonia addition, followed for calcination at 500 °C. The photocatalysts were characterized by N2 adsorption-desorption, FTIR spectroscopy, XRD Rietveld refinement, TG-DTG, SEM-EDS, DRS and elemental analysis. The performance of all solids was evaluated in the photocatalytic degradation of the cationic dye methylene blue in aqueous phase, under visible and UV irradiation, at 25 °C for 2 h. The results showed that the incorporation of Sn into TiO2 improved the textural properties and decreased the bandgap. All solids presented only TiO2 typical diffractograms, with anatase as the main phase, but catalyst with 10 % SnO2 presented also brookite phase, inferring that Sn atoms were incorporated into TiO2 structure, corroborated by MEV results. All tin-based photocatalysts show high activity under UV and visible light, with the 10 % SnO2 material reaching 83 % and 88 % degradation after 2 h under UV and visible radiation, respectively. This material was tested as an immobilized film, achieving 14 % of decolorization, and the reuse was also evaluated. Our investigation demonstrates that SnO2-TiO2 catalysts could be used to decompose a dye under UV and Visible light as powder in a batch reactor and immobilized as a composite film with chitosan, that opens new perspectives to facilitate the application using solar light.
{"title":"SnO2-TiO2 materials for photocatalytic degradation of cationic dye under UV and visible light and a chitosan composite film investigation","authors":"Lourdes A. Etshindo , Célia Sousa , Priscila Tamiasso-Martinhon , Marcos V. Colaço , Alexandre R. Camara , Angela S. Rocha","doi":"10.1016/j.cattod.2024.114995","DOIUrl":"10.1016/j.cattod.2024.114995","url":null,"abstract":"<div><p>The possibility of SnO<sub>2</sub> incorporation and immobilization as films forming composites opens new perspectives for TiO<sub>2</sub> to profit visible light and to facilitate the photocatalytic process, respectively. In this study, 0 %, 1 % and 10 % wt. of SnO<sub>2</sub> was incorporated into TiO<sub>2</sub> (SnO<sub>2</sub>-TiO<sub>2</sub>) by coprecipitation in a sol-gel method by ammonia addition, followed for calcination at 500 °C. The photocatalysts were characterized by N<sub>2</sub> adsorption-desorption, FTIR spectroscopy, XRD Rietveld refinement, TG-DTG, SEM-EDS, DRS and elemental analysis. The performance of all solids was evaluated in the photocatalytic degradation of the cationic dye methylene blue in aqueous phase, under visible and UV irradiation, at 25 °C for 2 h. The results showed that the incorporation of Sn into TiO<sub>2</sub> improved the textural properties and decreased the bandgap. All solids presented only TiO<sub>2</sub> typical diffractograms, with anatase as the main phase, but catalyst with 10 % SnO<sub>2</sub> presented also brookite phase, inferring that Sn atoms were incorporated into TiO<sub>2</sub> structure, corroborated by MEV results. All tin-based photocatalysts show high activity under UV and visible light, with the 10 % SnO<sub>2</sub> material reaching 83 % and 88 % degradation after 2 h under UV and visible radiation, respectively. This material was tested as an immobilized film, achieving 14 % of decolorization, and the reuse was also evaluated. Our investigation demonstrates that SnO<sub>2</sub>-TiO<sub>2</sub> catalysts could be used to decompose a dye under UV and Visible light as powder in a batch reactor and immobilized as a composite film with chitosan, that opens new perspectives to facilitate the application using solar light.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114995"},"PeriodicalIF":5.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.cattod.2024.114988
Tatiana Zanette , Yuri Miguel Variani , Bruna Pes Nicola , Silvia Gutiérrez-Tarriño , Christian Cerezo-Navarrete , Giovanni Agostini , Pascual Oña-Burgos , Christian Wittee Lopes , Katia Bernardo-Gusmão
A bimetallic pillared-layered MOF based on Ni and Zn with improved catalytic activity was synthesized and applied in the ethylene oligomerization reaction. According to the XANES spectra, the MOF possesses Ni in the 2+ oxidation state, a well-known active catalytic precursor in oligomerization systems. In addition, Ni and Zn oxide or metallic species were not identified, indicating the absence of impurity phases. µ-XRF and SEM-EDS techniques showed the homogeneous distribution of Ni and Zn species across the SBUs of the bimetallic MOF. Ni/Zn-MOF was applied in the ethylene oligomerization reaction using EASC as the co-catalyst, and the results were compared to its monometallic counterpart Ni-MOF. The bimetallic material Ni/Zn-MOF obtained a TOF corresponding to 135 ×103 h−1, which accounts for a 60 % increase in the catalytic activity achieved by Ni-MOF (85 ×103 h−1) under 15 bar of ethylene in a Parr reactor. Moreover, the results obtained in this work are remarkable compared to literature reports for Ni-based MOFs, demonstrating that the co-catalyst employed plays an important role in the catalytic activity. However, Ni/Zn-MOF showed a lower selectivity to α-C4 oligomers (36 %) against 58 % obtained by Ni-MOF. According to the reuse tests conducted, the bimetallic MOF can be reused for up to two reactions (under 5 bar ethylene in a glass reactor), although presenting a considerable loss in activity due to the formation of metallic Ni.
{"title":"Synthesis of NiZn-based paddle-wheel metal-organic framework and its use as a catalytic precursor for ethylene dimerization","authors":"Tatiana Zanette , Yuri Miguel Variani , Bruna Pes Nicola , Silvia Gutiérrez-Tarriño , Christian Cerezo-Navarrete , Giovanni Agostini , Pascual Oña-Burgos , Christian Wittee Lopes , Katia Bernardo-Gusmão","doi":"10.1016/j.cattod.2024.114988","DOIUrl":"10.1016/j.cattod.2024.114988","url":null,"abstract":"<div><p>A bimetallic pillared-layered MOF based on Ni and Zn with improved catalytic activity was synthesized and applied in the ethylene oligomerization reaction. According to the XANES spectra, the MOF possesses Ni in the 2+ oxidation state, a well-known active catalytic precursor in oligomerization systems. In addition, Ni and Zn oxide or metallic species were not identified, indicating the absence of impurity phases. µ-XRF and SEM-EDS techniques showed the homogeneous distribution of Ni and Zn species across the SBUs of the bimetallic MOF. Ni/Zn-MOF was applied in the ethylene oligomerization reaction using EASC as the co-catalyst, and the results were compared to its monometallic counterpart Ni-MOF. The bimetallic material Ni/Zn-MOF obtained a TOF corresponding to 135 ×10<sup>3</sup> h<sup>−1</sup>, which accounts for a 60 % increase in the catalytic activity achieved by Ni-MOF (85 ×10<sup>3</sup> h<sup>−1</sup>) under 15 bar of ethylene in a Parr reactor. Moreover, the results obtained in this work are remarkable compared to literature reports for Ni-based MOFs, demonstrating that the co-catalyst employed plays an important role in the catalytic activity. However, Ni/Zn-MOF showed a lower selectivity to α-C<sub>4</sub> oligomers (36 %) against 58 % obtained by Ni-MOF. According to the reuse tests conducted, the bimetallic MOF can be reused for up to two reactions (under 5 bar ethylene in a glass reactor), although presenting a considerable loss in activity due to the formation of metallic Ni.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114988"},"PeriodicalIF":5.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142077084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-21DOI: 10.1016/j.cattod.2024.114991
Gabriel V. Oliveira , Vinícius de Macedo , Ernesto A. Urquieta-González , Zuy M. Magriotis , Cristiane A. Pereira
Ammonia, a significant atmospheric pollutant, requires effective emission control due to its inherent toxicity and the generation of secondary pollutants like particulate matter. This control can be achieved through various methods, including catalytic processes. Therefore, our study focuses on evaluating the potential of catalysts based on iron oxide and nickel oxide supported on γ–Al2O3 for the selective catalytic oxidation of NH3 to N2 (NH3-SCO). The γ–Al2O3 was obtained by thermal decomposition of aluminum hydroxide, and 5 or 10 wt% of Fe or Ni was added through wetness incipient impregnation. XRD diffractograms confirmed the formation of the γ–Al2O3 phase. XRD, H2-TPR, and UV–vis DRS data showed the presence of Fe2O3, NiO, and NiAl2O4 in the catalysts. Introducing metal oxides onto the support led to a drop in the specific area, pore size, pore volume, and NH3 desorption, which was higher for the catalysts containing Fe. The catalysts were active in NH3-SCO, and the insertion of Fe or Ni was essential because it promoted a significant increase in the NH3 conversion (∼75 % Fe and ∼55 % Ni), compared to pure support (∼8 %), mainly from 400 °C. However, doubling the metal content has not resulted in a considerable increase in NH3 conversion. The N2 selectivity was higher for the catalysts containing Ni (∼85 %) from 400 °C compared to catalysts containing Fe (∼76 %). Such behavior was due to the larger surface area of the Ni-containing catalysts. Despite that, the 5Fe/γ–Al2O3 catalyst emerged as the most effective option for NH3-SCO applications, combining higher NH3 conversion and good N2 selectivity.
{"title":"Fe2O3/γ-Al2O3 and NiO/γ-Al2O3 catalysts for the selective catalytic oxidation of ammonia","authors":"Gabriel V. Oliveira , Vinícius de Macedo , Ernesto A. Urquieta-González , Zuy M. Magriotis , Cristiane A. Pereira","doi":"10.1016/j.cattod.2024.114991","DOIUrl":"10.1016/j.cattod.2024.114991","url":null,"abstract":"<div><p>Ammonia, a significant atmospheric pollutant, requires effective emission control due to its inherent toxicity and the generation of secondary pollutants like particulate matter. This control can be achieved through various methods, including catalytic processes. Therefore, our study focuses on evaluating the potential of catalysts based on iron oxide and nickel oxide supported on γ–Al<sub>2</sub>O<sub>3</sub> for the selective catalytic oxidation of NH<sub>3</sub> to N<sub>2</sub> (NH<sub>3</sub>-SCO). The γ–Al<sub>2</sub>O<sub>3</sub> was obtained by thermal decomposition of aluminum hydroxide, and 5 or 10 wt% of Fe or Ni was added through wetness incipient impregnation. XRD diffractograms confirmed the formation of the γ–Al<sub>2</sub>O<sub>3</sub> phase. XRD, H<sub>2</sub>-TPR, and UV–vis DRS data showed the presence of Fe<sub>2</sub>O<sub>3</sub>, NiO, and NiAl<sub>2</sub>O<sub>4</sub> in the catalysts. Introducing metal oxides onto the support led to a drop in the specific area, pore size, pore volume, and NH<sub>3</sub> desorption, which was higher for the catalysts containing Fe. The catalysts were active in NH<sub>3</sub>-SCO, and the insertion of Fe or Ni was essential because it promoted a significant increase in the NH<sub>3</sub> conversion (∼75 % Fe and ∼55 % Ni), compared to pure support (∼8 %), mainly from 400 °C. However, doubling the metal content has not resulted in a considerable increase in NH<sub>3</sub> conversion. The N<sub>2</sub> selectivity was higher for the catalysts containing Ni (∼85 %) from 400 °C compared to catalysts containing Fe (∼76 %). Such behavior was due to the larger surface area of the Ni-containing catalysts. Despite that, the 5Fe/γ–Al<sub>2</sub>O<sub>3</sub> catalyst emerged as the most effective option for NH<sub>3</sub>-SCO applications, combining higher NH<sub>3</sub> conversion and good N<sub>2</sub> selectivity.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114991"},"PeriodicalIF":5.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-20DOI: 10.1016/j.cattod.2024.114998
Felipe Fernandes Barbosa , Adonay R. Loiola , Sibele B.C. Pergher , Tiago Pinheiro Braga
The energetic demands of modern society urge a transition that relies on alternative and sustainable sources. Among the available possibilities focused on mitigating the use of fossil fuels, the biodiesel industry stands out. However, the excess of glycerol generated as a coproduct still raises debate regarding how it could be better used. A well-established approach is the use of the platform molecule, i.e., glycerol, in the presence of heterogeneous catalysts to obtain added value products. Zeolites are well-known for their versatility in numerous applications, such as in the oil industry. Besides, different types of aluminosilicates are being studied in the catalytic conversion of glycerol to acrolein, acetol, acrylic acid, allyl alcohol, solketal, etc. This review addresses the general properties, fundaments, synergetic aspects, theoretical modeling, resistance, and coke formation, as well as the zeolites limitations that pose obstacles for those reactions. This highlights the importance of developing zeolite materials with specific acid sites, synchronizing their amount and strength with the pore interconnectivity so that reagents diffusion within the zeolitic channels can be maximized, leading to a decrease in the obstruction of active sites and pores caused by coke deposition. A number of modifications, including hierarchization, isomorphic substitution, acidity tuning, and additional phases (SMSI effect), have been reported as alternatives for improving the performance of glycerol conversion and the resistance to deactivation. Several developments involving reactional mechanisms, coke deposition, and catalysts applied to glycerol conversion have been the subject of studies centered on process optimization, which is translated into the development of solids more resistant to deactivation. Among the zeolites with the best catalytic performance, the following stand out: BEA, MCM-22, MFI, ITQ-2, SAPO-34, and ZSM-5. Some complex technical aspects still need to be better understood so that the scalability of the catalytic conversion of glycerol becomes economically feasible, thereby arousing the interest of both the public and private sectors.
{"title":"Challenges, prospects and comprehensive evolution of zeolite-based materials for the catalytic conversion of glycerol: A review","authors":"Felipe Fernandes Barbosa , Adonay R. Loiola , Sibele B.C. Pergher , Tiago Pinheiro Braga","doi":"10.1016/j.cattod.2024.114998","DOIUrl":"10.1016/j.cattod.2024.114998","url":null,"abstract":"<div><p>The energetic demands of modern society urge a transition that relies on alternative and sustainable sources. Among the available possibilities focused on mitigating the use of fossil fuels, the biodiesel industry stands out. However, the excess of glycerol generated as a coproduct still raises debate regarding how it could be better used. A well-established approach is the use of the platform molecule, i.e., glycerol, in the presence of heterogeneous catalysts to obtain added value products. Zeolites are well-known for their versatility in numerous applications, such as in the oil industry. Besides, different types of aluminosilicates are being studied in the catalytic conversion of glycerol to acrolein, acetol, acrylic acid, allyl alcohol, solketal, etc. This review addresses the general properties, fundaments, synergetic aspects, theoretical modeling, resistance, and coke formation, as well as the zeolites limitations that pose obstacles for those reactions. This highlights the importance of developing zeolite materials with specific acid sites, synchronizing their amount and strength with the pore interconnectivity so that reagents diffusion within the zeolitic channels can be maximized, leading to a decrease in the obstruction of active sites and pores caused by coke deposition. A number of modifications, including hierarchization, isomorphic substitution, acidity tuning, and additional phases (SMSI effect), have been reported as alternatives for improving the performance of glycerol conversion and the resistance to deactivation. Several developments involving reactional mechanisms, coke deposition, and catalysts applied to glycerol conversion have been the subject of studies centered on process optimization, which is translated into the development of solids more resistant to deactivation. Among the zeolites with the best catalytic performance, the following stand out: BEA, MCM-22, MFI, ITQ-2, SAPO-34, and ZSM-5. Some complex technical aspects still need to be better understood so that the scalability of the catalytic conversion of glycerol becomes economically feasible, thereby arousing the interest of both the public and private sectors.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114998"},"PeriodicalIF":5.2,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142049500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-17DOI: 10.1016/j.cattod.2024.114993
Roger Kober , Marcio Schwaab , Elisa Barbosa-Coutinho , André Luis Alberton , José Carlos Pinto
In the present paper a comparison between different parameter estimation procedures commonly used for the kinetic modeling of chemical reaction is performed, based on experimental measurements of the cyclohexane dehydrogenation to benzene. The obtained results show that, when the Arrhenius equation parameters are estimated from estimates of the rate constant taken at different temperatures, larger parameter uncertainties and correlations are obtained, particularly when the variances of the experimental measurements are not considered during the estimation process. It is also observed that an apparent kinetic compensation effect occurs when the experimental data are separated according to the inlet partial pressure and catalyst mass in the reactor, mainly due to the existing and unavoidable experimental uncertainties and parameter correlations. Additionally, it is shown that larger uncertainties and correlations are obtained when the parameter estimates are computed through the differential method, which can also lead to poorer model predictions of the experimental data. Finally, it is shown that the simultaneous one-step estimation of all model parameters through the integral method and considering the available experimental uncertainties can provide the most accurate parameter estimates, making use of mathematical expressions that describe how variances of the experimental measurements depend on the experimental conditions.
{"title":"Cyclohexane dehydrogenation: Critical evaluation of parameter estimation procedures for kinetic modeling","authors":"Roger Kober , Marcio Schwaab , Elisa Barbosa-Coutinho , André Luis Alberton , José Carlos Pinto","doi":"10.1016/j.cattod.2024.114993","DOIUrl":"10.1016/j.cattod.2024.114993","url":null,"abstract":"<div><p>In the present paper a comparison between different parameter estimation procedures commonly used for the kinetic modeling of chemical reaction is performed, based on experimental measurements of the cyclohexane dehydrogenation to benzene. The obtained results show that, when the Arrhenius equation parameters are estimated from estimates of the rate constant taken at different temperatures, larger parameter uncertainties and correlations are obtained, particularly when the variances of the experimental measurements are not considered during the estimation process. It is also observed that an apparent kinetic compensation effect occurs when the experimental data are separated according to the inlet partial pressure and catalyst mass in the reactor, mainly due to the existing and unavoidable experimental uncertainties and parameter correlations. Additionally, it is shown that larger uncertainties and correlations are obtained when the parameter estimates are computed through the differential method, which can also lead to poorer model predictions of the experimental data. Finally, it is shown that the simultaneous one-step estimation of all model parameters through the integral method and considering the available experimental uncertainties can provide the most accurate parameter estimates, making use of mathematical expressions that describe how variances of the experimental measurements depend on the experimental conditions.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114993"},"PeriodicalIF":5.2,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142098291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-16DOI: 10.1016/j.cattod.2024.114996
Claudio W. Backes , Felipe B. Reis , Guilherme B. Strapasson , Marcelo Assis , Elson Longo , Daniel E. Weibel
Carbon quantum dots (CQDs) have recently attracted attention across various fields due to their small size, high conductivity, fluorescence emission, low toxicity, and other desirable characteristics. In this study, highly fluorescent CQDs with an average diameter of 3.7 nm were prepared via microwave irradiation using a standard commercial microwave oven and glycerol as solvent. Several cation promoters were examined for CQD synthesis, with copper ions ultimately chosen for comprehensive characterization and application. The CQDs were impregnated onto both commercially available and microwave-synthesized TiO2 nanoparticles. The photocatalytic activity was evaluated with respect to the hydrogen and oxygen generation. Under the employed conditions, the oxygen evolution reaction (OER) exhibited over 12 times higher efficiency than the hydrogen evolution reaction (HER). The enhanced OER activity is attributed to the high electronic conductivity of the small Cu doped CQDs@TiO2 (Cu-CQDs@TiO2) facilitating an efficient electron transfer for the OER . Visible light activity (λ ≥ 400 nm) was demonstrated by photodegradation of the indigo carmine (IC) solution used as a model pollutant. Irradiation in the presence of the Cu-CQDs@TiO2 photocatalyst resulted in complete degradation of the dye in less than 3 hours. The results presented here provide a promising methodology for designing high-performance photocatalysts based on environmentally friendly CQD syntheses. Crucial applications, from renewable energy production to environmental remediation, will benefit from strategies using the carbon abundance on Earth.
{"title":"Green Synthesis of carbon quantum dots for enhancing photocatalytic activity: Hydrogen/oxygen evolution and dye photodegradation","authors":"Claudio W. Backes , Felipe B. Reis , Guilherme B. Strapasson , Marcelo Assis , Elson Longo , Daniel E. Weibel","doi":"10.1016/j.cattod.2024.114996","DOIUrl":"10.1016/j.cattod.2024.114996","url":null,"abstract":"<div><p>Carbon quantum dots (CQDs) have recently attracted attention across various fields due to their small size, high conductivity, fluorescence emission, low toxicity, and other desirable characteristics. In this study, highly fluorescent CQDs with an average diameter of 3.7 nm were prepared via microwave irradiation using a standard commercial microwave oven and glycerol as solvent. Several cation promoters were examined for CQD synthesis, with copper ions ultimately chosen for comprehensive characterization and application. The CQDs were impregnated onto both commercially available and microwave-synthesized TiO<sub>2</sub> nanoparticles. The photocatalytic activity was evaluated with respect to the hydrogen and oxygen generation. Under the employed conditions, the oxygen evolution reaction (OER) exhibited over 12 times higher efficiency than the hydrogen evolution reaction (HER). The enhanced OER activity is attributed to the high electronic conductivity of the small Cu doped CQDs@TiO<sub>2</sub> (Cu-CQDs@TiO<sub>2</sub>) facilitating an efficient electron transfer for the OER . Visible light activity (λ ≥ 400 nm) was demonstrated by photodegradation of the indigo carmine (IC) solution used as a model pollutant. Irradiation in the presence of the Cu-CQDs@TiO<sub>2</sub> photocatalyst resulted in complete degradation of the dye in less than 3 hours. The results presented here provide a promising methodology for designing high-performance photocatalysts based on environmentally friendly CQD syntheses. Crucial applications, from renewable energy production to environmental remediation, will benefit from strategies using the carbon abundance on Earth.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"443 ","pages":"Article 114996"},"PeriodicalIF":5.2,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0920586124004905/pdfft?md5=3bb19f2b63d812c21c44c470794d472d&pid=1-s2.0-S0920586124004905-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142040272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-15DOI: 10.1016/j.cattod.2024.114994
G.L. Catuzo , Y.L. de Lima , D.D. Petrolini , E.M. Assaf
The high methane availability and its significant role as a greenhouse gas have led the scientific community to pursue methods for its use. This paper proposes the usage of the oxidative coupling of methane (OCM) as a promising path to transform methane directly into value-added hydrocarbons, mostly ethylene, which serves as a crucial compound in the petrochemical sector. An efficient OCM catalyst should contain substantial basicity and oxygen vacancies for providing surface electrophilic oxygen species, such as superoxides and peroxides, instrumental for boosting selectivity towards C2 products. Mixed lanthanum-cerium oxide (La-Ce) catalysts have emerged as strong candidates in OCM due to their high thermal stability, oxygen mobility, and high alkalinity. In this study, they were prepared through a surfactant-assisted hydrothermal method with different La/Ce ratios for fine-tuning their basic properties and promoting oxygen mobility on the surface of the catalysts. Samples followed a volcano-shaped relationship between C2 yield and La content, with optimal performance at a La/Ce molar ratio of 2.1, attributed to the interplay between the high amount of basic sites and oxygen vacancies, increasing the presence of superoxide species over lattice oxygen. Moreover, the Sr-promoted catalyst showed high density of strong basic sites while preserving the reactive oxygen species, achieving 20 % CH4 conversion, with 57 % C2 compounds selectivity at 750 °C and GHSV of 18.000 mL.gcat−1.h−1.
{"title":"Influence of the La/Ce ratio on La-Ce oxides promoted by Sr in the methane oxidative coupling reaction","authors":"G.L. Catuzo , Y.L. de Lima , D.D. Petrolini , E.M. Assaf","doi":"10.1016/j.cattod.2024.114994","DOIUrl":"10.1016/j.cattod.2024.114994","url":null,"abstract":"<div><p>The high methane availability and its significant role as a greenhouse gas have led the scientific community to pursue methods for its use. This paper proposes the usage of the oxidative coupling of methane (OCM) as a promising path to transform methane directly into value-added hydrocarbons, mostly ethylene, which serves as a crucial compound in the petrochemical sector. An efficient OCM catalyst should contain substantial basicity and oxygen vacancies for providing surface electrophilic oxygen species, such as superoxides and peroxides, instrumental for boosting selectivity towards C<sub>2</sub> products. Mixed lanthanum-cerium oxide (La-Ce) catalysts have emerged as strong candidates in OCM due to their high thermal stability, oxygen mobility, and high alkalinity. In this study, they were prepared through a surfactant-assisted hydrothermal method with different La/Ce ratios for fine-tuning their basic properties and promoting oxygen mobility on the surface of the catalysts. Samples followed a volcano-shaped relationship between C<sub>2</sub> yield and La content, with optimal performance at a La/Ce molar ratio of 2.1, attributed to the interplay between the high amount of basic sites and oxygen vacancies, increasing the presence of superoxide species over lattice oxygen. Moreover, the Sr-promoted catalyst showed high density of strong basic sites while preserving the reactive oxygen species, achieving 20 % CH<sub>4</sub> conversion, with 57 % C<sub>2</sub> compounds selectivity at 750 °C and GHSV of 18.000 mL.g<sub>cat</sub><sup>−1</sup>.h<sup>−1</sup>.</p></div>","PeriodicalId":264,"journal":{"name":"Catalysis Today","volume":"444 ","pages":"Article 114994"},"PeriodicalIF":5.2,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}