Lukas Wegmann, Farhad Mehta, Peter Sommerlad, Mirko Stocker
Type-directed API search, using queries composed of both keywords and type signatures to retrieve definitions from APIs, are popular in the functional programming community. This search technique allows programmers to easily navigate complex and large APIs in order to find the definitions they are interested in. While there exist some effective approaches to address type-directed API search for functional languages, we observed that none of these have been successfully adapted for use with statically-typed, object-oriented languages. The challenge here is incorporating large and unified inheritance hierarchies and the resulting prevalence of subtyping into an API retrieval model. We describe a new approach to API retrieval and provide an implementation thereof for the Scala language. Our evaluation with queries mined from Q&A websites shows that the model retrieves definitions from the Scala standard library with 94% of the relevant results in the top 10.
{"title":"Scaps: type-directed API search for Scala","authors":"Lukas Wegmann, Farhad Mehta, Peter Sommerlad, Mirko Stocker","doi":"10.1145/2998392.2998405","DOIUrl":"https://doi.org/10.1145/2998392.2998405","url":null,"abstract":"Type-directed API search, using queries composed of both keywords and type signatures to retrieve definitions from APIs, are popular in the functional programming community. This search technique allows programmers to easily navigate complex and large APIs in order to find the definitions they are interested in. While there exist some effective approaches to address type-directed API search for functional languages, we observed that none of these have been successfully adapted for use with statically-typed, object-oriented languages. The challenge here is incorporating large and unified inheritance hierarchies and the resulting prevalence of subtyping into an API retrieval model. We describe a new approach to API retrieval and provide an implementation thereof for the Scala language. Our evaluation with queries mined from Q&A websites shows that the model retrieves definitions from the Scala standard library with 94% of the relevant results in the top 10.","PeriodicalId":269542,"journal":{"name":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","volume":"29 5 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124138264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We present a lightweight library for testing concurrent Scala programs by systematically exploring multiple interleavings between user-specified operations on shared objects. Our library is targeted at beginners of concurrent programming in Scala, runs on a standard JVM, and supports conventional synchronization primitives such as `wait`, `notify`, and `synchronized`. The key component of the library is the trait `SchedulableMonitor` that accepts a thread schedule, and interleaves as per the schedule all user-specified operations invoked through multiple threads on objects implementing the trait. Using our library, we developed a unit test engine that tests concurrent operations on shared objects on thousands of schedules obtained by bounding the number of context-switches. If a unit test fails on a schedule, the test engine offers as feedback the interleaved traces of execution that resulted in the failure. We used our test engine to automatically test and evaluate two assignments: (a) lock-based producer/consumer problem, and (b) lock-free sorted list implementation, offered to a class of 150 under-graduate students of EPFL. Our evaluations show that the system is effective in detecting bugs in students' solutions.
{"title":"A Scala library for testing student assignments on concurrent programming","authors":"M. Mayer, Ravichandhran Madhavan","doi":"10.1145/2998392.2998395","DOIUrl":"https://doi.org/10.1145/2998392.2998395","url":null,"abstract":"We present a lightweight library for testing concurrent Scala programs by systematically exploring multiple interleavings between user-specified operations on shared objects. Our library is targeted at beginners of concurrent programming in Scala, runs on a standard JVM, and supports conventional synchronization primitives such as `wait`, `notify`, and `synchronized`. The key component of the library is the trait `SchedulableMonitor` that accepts a thread schedule, and interleaves as per the schedule all user-specified operations invoked through multiple threads on objects implementing the trait. Using our library, we developed a unit test engine that tests concurrent operations on shared objects on thousands of schedules obtained by bounding the number of context-switches. If a unit test fails on a schedule, the test engine offers as feedback the interleaved traces of execution that resulted in the failure. We used our test engine to automatically test and evaluate two assignments: (a) lock-based producer/consumer problem, and (b) lock-free sorted list implementation, offered to a class of 150 under-graduate students of EPFL. Our evaluations show that the system is effective in detecting bugs in students' solutions.","PeriodicalId":269542,"journal":{"name":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125648638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Quentin Stiévenart, Jens Nicolay, W. Meuter, Coen De Roover
We present Scala-AM, a framework for implementing static analyses as systematically abstracted abstract machines. Analyses implemented on top of Scala-AM separate operational semantics from machine abstraction concerns. This modularity facilitates varying the analyzed language and the applied abstraction method in an analysis. We describe the design of our framework and demonstrate its use in a static analysis for the DOT calculus. We conclude with a tour of the features of Scala through which Scala-AM achieves its modularity.
{"title":"Building a modular static analysis framework in Scala (tool paper)","authors":"Quentin Stiévenart, Jens Nicolay, W. Meuter, Coen De Roover","doi":"10.1145/2998392.3001579","DOIUrl":"https://doi.org/10.1145/2998392.3001579","url":null,"abstract":"We present Scala-AM, a framework for implementing static analyses as systematically abstracted abstract machines. Analyses implemented on top of Scala-AM separate operational semantics from machine abstraction concerns. This modularity facilitates varying the analyzed language and the applied abstraction method in an analysis. We describe the design of our framework and demonstrate its use in a static analysis for the DOT calculus. We conclude with a tour of the features of Scala through which Scala-AM achieves its modularity.","PeriodicalId":269542,"journal":{"name":"Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133948606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}