首页 > 最新文献

Time Series Clustering and Classification最新文献

英文 中文
Feature-based approaches 基于特征的方法
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-9
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Feature-based approaches","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-9","DOIUrl":"https://doi.org/10.1201/9780429058264-9","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114131082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Other time series clustering approaches 其他时间序列聚类方法
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-8
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Other time series clustering approaches","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-8","DOIUrl":"https://doi.org/10.1201/9780429058264-8","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131610445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Observation-based clustering 基于聚类
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-5
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Observation-based clustering","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-5","DOIUrl":"https://doi.org/10.1201/9780429058264-5","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129279434","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fuzzy clustering 模糊聚类
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-4
E. Maharaj, P. D’Urso, Jorge Caiado
フ ァ ジ ィ ・ク ラス タ リン グ (Fuzzy Clustering) 有限個の個体に つ い て の 多変量デ ー タが 与えられたとき、これらの 個体を互い に重なりあわない い くつ か の クラス に分 け、同じクラス に はい る個体はJhl い !こ距離が近く、 異なるクラス に はい る個体は距離が遠い ように分類することをクラス タリン グとい う。ファ ジィ ・クラス タリン グ とは、通 常 、 次 の A 、 B の い ずれ か を意味する。 A .クリス プ分割 (共通部分が 空 で、すべ ての合併が個体全体 の 集合に致するような部分集合の 族の こと、分類ともい う。 )の 代りにファジィ分割を利用す るもの 。B .個体の 集合上 の フ ァ ジィ同値関係をデ ータから構成するもの 。 A とB につ い て代表的な手法 を次に挙げる。 A .(Fuzzy c −means )n 個の個体に つ い て の データが γ 次元 空間 の点 褊 k = 1,.., 12,で 表されるとする。 c 個の ファ ジィ集合からなるファジィ分割とは、ΣtUi(x ,) =1, k=1,..,n ,を満たすIti, i =・1,..,c,を意味する。ファジィ分 割を決定 するため 、晦 μ、(κh)に関する最適化問題 :min Σ tk (eq・,) II Xh− Vi ll Z (Il Ilは L2ノル ム )を解く。 ここで、最適化は 砺 i= 1 , ..,c;k ; 1,..,n ,および Vi, i=一1,..,・c,につ い て行う。 制約条件として 、 晦 が ファジィ分割を表わすように、 0≦ 晦 ≦Lfor a1141e ;Σ、 uilt =1, for all k,が 課せ られる。また、 m は m > 1 となる指数 ラメータである。 Bezdek
Fuzzy Clustering:当对有限个体给定多变量数据时,如何将这些个体不相互重叠?的班级,在同一班级的个体是Jhl !个体距离较近,而属于不同类别的个体则以距离较远的方式进行分类。所谓fazy krastaring,是指通常、次A、B的异同化。A .克里斯普分割(公共部分为空,所有的合并变成个体全体的集合的子集族,也称为分类。)而利用模糊分割。B .由数据构成个体集合上的二元等价关系。下面列举A和B的代表性手法。a . (fuzzy c - means) n个个体个γ-维数据空间的分褊k = 1, . .,用12来表示。c个化ジィ集合组成ファジィ分割,σtui (x,) = 1, k = 1, . .,满足n, Iti, i = 1,..,意为c。ファジィ分率决定,因此晦,μh(κ)相关的优化问题:minσtk (eq,) ii xh - v1 ll z (il il l2ノル集团)解开。这里,优化砺i= 1, .., c;k;1, . .,n,和Vi, i= 1,..,·c,然后进行。作为限制条件,使得晦表示模糊分割,0≤晦≤Lfor a1141e;σ,uilt = 1, for all k,征收。另外,m是使m > 1的指数尺。bezdek
{"title":"Fuzzy clustering","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-4","DOIUrl":"https://doi.org/10.1201/9780429058264-4","url":null,"abstract":"フ ァ ジ ィ ・ク ラス タ リン グ (Fuzzy Clustering) 有限個の個体に つ い て の 多変量デ ー タが 与えられたとき、これらの 個体を互い に重なりあわない い くつ か の クラス に分 け、同じクラス に はい る個体はJhl い !こ距離が近く、 異なるクラス に はい る個体は距離が遠い ように分類することをクラス タリン グとい う。ファ ジィ ・クラス タリン グ とは、通 常 、 次 の A 、 B の い ずれ か を意味する。 A .クリス プ分割 (共通部分が 空 で、すべ ての合併が個体全体 の 集合に致するような部分集合の 族の こと、分類ともい う。 )の 代りにファジィ分割を利用す るもの 。B .個体の 集合上 の フ ァ ジィ同値関係をデ ータから構成するもの 。 A とB につ い て代表的な手法 を次に挙げる。 A .(Fuzzy c −means )n 個の個体に つ い て の データが γ 次元 空間 の点 褊 k = 1,.., 12,で 表されるとする。 c 個の ファ ジィ集合からなるファジィ分割とは、ΣtUi(x ,) =1, k=1,..,n ,を満たすIti, i =・1,..,c,を意味する。ファジィ分 割を決定 するため 、晦 μ、(κh)に関する最適化問題 :min Σ tk (eq・,) II Xh− Vi ll Z (Il Ilは L2ノル ム )を解く。 ここで、最適化は 砺 i= 1 , ..,c;k ; 1,..,n ,および Vi, i=一1,..,・c,につ い て行う。 制約条件として 、 晦 が ファジィ分割を表わすように、 0≦ 晦 ≦Lfor a1141e ;Σ、 uilt =1, for all k,が 課せ られる。また、 m は m > 1 となる指数 ラメータである。 Bezdek","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122725529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Model-based clustering 基于模型的聚类
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-7
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Model-based clustering","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-7","DOIUrl":"https://doi.org/10.1201/9780429058264-7","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131102429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Time series features and models 时间序列特征和模型
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-2
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Time series features and models","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-2","DOIUrl":"https://doi.org/10.1201/9780429058264-2","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125060529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Traditional cluster analysis 传统聚类分析
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-3
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Traditional cluster analysis","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-3","DOIUrl":"https://doi.org/10.1201/9780429058264-3","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127898700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feature-based clustering 基于特征聚类
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-6
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Feature-based clustering","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-6","DOIUrl":"https://doi.org/10.1201/9780429058264-6","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115495969","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Software and data sets 软件和数据集
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-11
Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, C. Albrecht, Xiaoxiang Zhu
S elf-supervised pretraining bears the potential to generate expressive representations from large-scale Earth observation (EO) data without human annotation. However, most existing pretraining in the field is based on ImageNet or medium-sized, labeled remote sensing (RS) datasets. In this article, we share an unlabeled dataset Self-Supervised Learning for Earth Observa-tion-Sentinel-1/2 ( SSL4EO - S12 ) to assemble a large-scale, global, multimodal, and multiseasonal corpus of satellite imagery. We demonstrate SSL4EO-S12 to succeed in self-supervised pretraining for a set of representative methods: momentum contrast (MoCo), self-distillation with no labels (DINO), masked autoencoders (MAE), and data2vec, and multiple downstream applications, including scene classification, semantic segmentation, and change detection. Our benchmark results prove the effectiveness of SSL4EO-S12 compared to existing datasets. The dataset, related source code, and pretrained models are available at https://github.com/zhu-xlab/ SSL4EO-S12.
自监督预训练具有在没有人工注释的情况下从大规模地球观测(EO)数据中生成表达性表示的潜力。然而,该领域现有的大多数预训练都是基于ImageNet或中型标记遥感(RS)数据集。在本文中,我们分享了一个无标记数据集自监督学习地球观测-哨兵1/2 (SSL4EO - S12),以组装大规模,全球,多模式和多季节的卫星图像语料库。我们展示了SSL4EO-S12在自监督预训练中取得成功的一组代表性方法:动量对比(MoCo)、无标签自蒸馏(DINO)、蒙面自动编码器(MAE)和data2vec,以及多个下游应用,包括场景分类、语义分割和变化检测。我们的基准测试结果证明了与现有数据集相比,SSL4EO-S12的有效性。数据集、相关源代码和预训练模型可从https://github.com/zhu-xlab/ SSL4EO-S12获得。
{"title":"Software and data sets","authors":"Yi Wang, Nassim Ait Ali Braham, Zhitong Xiong, Chenying Liu, C. Albrecht, Xiaoxiang Zhu","doi":"10.1201/9780429058264-11","DOIUrl":"https://doi.org/10.1201/9780429058264-11","url":null,"abstract":"S elf-supervised pretraining bears the potential to generate expressive representations from large-scale Earth observation (EO) data without human annotation. However, most existing pretraining in the field is based on ImageNet or medium-sized, labeled remote sensing (RS) datasets. In this article, we share an unlabeled dataset Self-Supervised Learning for Earth Observa-tion-Sentinel-1/2 ( SSL4EO - S12 ) to assemble a large-scale, global, multimodal, and multiseasonal corpus of satellite imagery. We demonstrate SSL4EO-S12 to succeed in self-supervised pretraining for a set of representative methods: momentum contrast (MoCo), self-distillation with no labels (DINO), masked autoencoders (MAE), and data2vec, and multiple downstream applications, including scene classification, semantic segmentation, and change detection. Our benchmark results prove the effectiveness of SSL4EO-S12 compared to existing datasets. The dataset, related source code, and pretrained models are available at https://github.com/zhu-xlab/ SSL4EO-S12.","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114265057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Other time series classification approaches 其他时间序列分类方法
Pub Date : 2019-03-19 DOI: 10.1201/9780429058264-10
E. Maharaj, P. D’Urso, Jorge Caiado
{"title":"Other time series classification approaches","authors":"E. Maharaj, P. D’Urso, Jorge Caiado","doi":"10.1201/9780429058264-10","DOIUrl":"https://doi.org/10.1201/9780429058264-10","url":null,"abstract":"","PeriodicalId":270319,"journal":{"name":"Time Series Clustering and Classification","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115941801","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Time Series Clustering and Classification
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1