This chapter addresses fundamental vector fields. The concept of a connection on a principal bundle is essential in the construction of the Cartan model. To define a connection on a principal bundle, one first needs to define the fundamental vector fields. When a Lie group acts smoothly on a manifold, every element of the Lie algebra of the Lie group generates a vector field on the manifold called a fundamental vector field. On a principal bundle, the fundamental vectors are precisely the vertical tangent vectors. In general, there is a relation between zeros of fundamental vector fields and fixed points of the group action. Unless specified otherwise (such as on a principal bundle), a group action is assumed to be a left action.
{"title":"Fundamental Vector Fields","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.17","DOIUrl":"https://doi.org/10.2307/j.ctvrdf1gz.17","url":null,"abstract":"This chapter addresses fundamental vector fields. The concept of a connection on a principal bundle is essential in the construction of the Cartan model. To define a connection on a principal bundle, one first needs to define the fundamental vector fields. When a Lie group acts smoothly on a manifold, every element of the Lie algebra of the Lie group generates a vector field on the manifold called a fundamental vector field. On a principal bundle, the fundamental vectors are precisely the vertical tangent vectors. In general, there is a relation between zeros of fundamental vector fields and fixed points of the group action. Unless specified otherwise (such as on a principal bundle), a group action is assumed to be a left action.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130680517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This chapter explores integration on a compact connected Lie group. One of the great advantages of working with a compact Lie group is the possibility of extending the notion of averaging from a finite group to the compact Lie group. If the compact Lie group is connected, then there exists a unique bi-invariant top-degree form with total integral 1, which simplifies the presentation of averaging. The averaging operator is useful for constructing invariant objects. For example, suppose a compact connected Lie group G acts smoothly on the left on a manifold M. Given any C∞ differential k-form ω on M, by averaging all the left translates of ω over G, one can produce a C∞ invariant k-form on M. As another example, on a G-manifold one can average all translates of a Riemannian metric to produce an invariant Riemann metric.
{"title":"Integration on a Compact Connected Lie Group","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.19","DOIUrl":"https://doi.org/10.2307/j.ctvrdf1gz.19","url":null,"abstract":"This chapter explores integration on a compact connected Lie group. One of the great advantages of working with a compact Lie group is the possibility of extending the notion of averaging from a finite group to the compact Lie group. If the compact Lie group is connected, then there exists a unique bi-invariant top-degree form with total integral 1, which simplifies the presentation of averaging. The averaging operator is useful for constructing invariant objects. For example, suppose a compact connected Lie group G acts smoothly on the left on a manifold M. Given any C∞ differential k-form ω on M, by averaging all the left translates of ω over G, one can produce a C∞ invariant k-form on M. As another example, on a G-manifold one can average all translates of a Riemannian metric to produce an invariant Riemann metric.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133328707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Equivariant Cohomology of 𝑆² Under Rotation","authors":"","doi":"10.2307/j.ctvrdf1gz.13","DOIUrl":"https://doi.org/10.2307/j.ctvrdf1gz.13","url":null,"abstract":"","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125744050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This chapter looks at a universal bundle for a compact Lie group. By Milnor's construction, every topological group has a universal bundle. Independently of Milnor's result, the chapter constructs a universal bundle for any compact Lie group G. This construction is based on the fact that every compact Lie group can be embedded as a subgroup of some orthogonal group O(k). The chapter first constructs a universal O(k)-bundle by finding a weakly contractible space on which O(k) acts freely. The infinite Stiefel variety V (k, ∞) is such a space. As a subgroup of O(k), the compact Lie group G will also act freely on V (k, ∞), thereby producing a universal G-bundle.
{"title":"A Universal Bundle for a Compact Lie Group","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.14","DOIUrl":"https://doi.org/10.2307/j.ctvrdf1gz.14","url":null,"abstract":"This chapter looks at a universal bundle for a compact Lie group. By Milnor's construction, every topological group has a universal bundle. Independently of Milnor's result, the chapter constructs a universal bundle for any compact Lie group G. This construction is based on the fact that every compact Lie group can be embedded as a subgroup of some orthogonal group O(k). The chapter first constructs a universal O(k)-bundle by finding a weakly contractible space on which O(k) acts freely. The infinite Stiefel variety V (k, ∞) is such a space. As a subgroup of O(k), the compact Lie group G will also act freely on V (k, ∞), thereby producing a universal G-bundle.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121697976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-03-03DOI: 10.23943/princeton/9780691191751.003.0001
L. Tu
This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.
{"title":"Overview","authors":"L. Tu","doi":"10.23943/princeton/9780691191751.003.0001","DOIUrl":"https://doi.org/10.23943/princeton/9780691191751.003.0001","url":null,"abstract":"This chapter provides an overview of equivariant cohomology. Cohomology in any of its various forms is one of the most important inventions of the twentieth century. A functor from topological spaces to rings, cohomology turns a geometric problem into an easier algebraic problem. Equivariant cohomology is a cohomology theory that takes into account the symmetries of a space. Many topological and geometrical quantities can be expressed as integrals on a manifold. Integrals are vitally important in mathematics. However, they are also rather difficult to compute. When a manifold has symmetries, as expressed by a group action, in many cases the localization formula in equivariant cohomology computes the integral as a finite sum over the fixed points of the action, providing a powerful computational tool.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121618597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This chapter explores some applications of equivariant cohomology. Since its introduction in the Fifties, equivariant cohomology has found applications in topology, symplectic geometry, K-theory, and physics, among other fields. Its greatest utility may be in converting an integral on a manifold to a finite sum. Since many problems in mathematics can be expressed in terms of integrals, the equivariant localization formula provides a powerful computational tool. The chapter then discusses a few of the applications of the equivariant localization formula. In order to use the equivariant localization formula to compute the integral of an invariant form, the form must have an equivariantly closed extension.
{"title":"Some Applications","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.38","DOIUrl":"https://doi.org/10.2307/j.ctvrdf1gz.38","url":null,"abstract":"This chapter explores some applications of equivariant cohomology. Since its introduction in the Fifties, equivariant cohomology has found applications in topology, symplectic geometry, K-theory, and physics, among other fields. Its greatest utility may be in converting an integral on a manifold to a finite sum. Since many problems in mathematics can be expressed in terms of integrals, the equivariant localization formula provides a powerful computational tool. The chapter then discusses a few of the applications of the equivariant localization formula. In order to use the equivariant localization formula to compute the integral of an invariant form, the form must have an equivariantly closed extension.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"119 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141225348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.
{"title":"The Topology of a Group Action","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.31","DOIUrl":"https://doi.org/10.2307/j.ctvrdf1gz.31","url":null,"abstract":"This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"80 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131424717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}