It is indisputable that structural defects are pivotal in modulating the properties of materials. This study provides a comprehensive analysis of the structural, optical, and photoluminescence characteristics of V2O5, ZrO2, and ZrV2O7.These materials were chosen for their potential applications in various key technological domains. The XRD results revealed the formation of high-purity materials with no secondary phases. It was determined that ZrO2exhibits the most significant quantity of structural defects among the investigated materials. The variation in crystallite size as determined by XRD aligns with the variation in grain size observed through Scanning Electron Microscopy (SEM).The optical band gaps of V2O5, ZrO2, and ZrV2O7 were determined to be 2.27 eV, 5.19 eV, and 2.38 eV, respectively. X-ray Photoelectron Spectroscopy (XPS) analysis indicated the presence of constituent elements without any contaminants. A detailed examination of the photoluminescence (PL) emission characteristics in both UV–Vis and near-infrared (NIR) regions for all materials presented broad visible luminescence in the [450–650] nm range under UV excitation. Structural defects are crucial in determining the physico-chemical properties of materials. This is thoroughly examined for V2O5, ZrO2, and ZrV2O7.The infrared (IR) emission spectra, introduced for the first time in this study for V2O5, ZrO2, and ZrV2O7, are employed to elucidate the localization of structural defects within the band gap.