首页 > 最新文献

Proceedings of the ACM Multimedia Asia最新文献

英文 中文
Food Photo Enhancer of One Sample Generative Adversarial Network 单样本生成对抗网络的食物照片增强器
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366605
Shudan Wang, Liang Sun, Weiming Dong, Yong Zhang
Image enhancement is an important branch in the field of image processing. A few existing methods leverage Generative Adversarial Networks (GANs) for this task. However, they have several defects when applied to a specific type of images, such as food photo. First, a large set of original-enhanced image pairs are required to train GANs that have millions of parameters. Such image pairs are expensive to acquire. Second, color distribution of enhanced images generated by previous methods is not consistent with the original ones, which is not expected. To alleviate the issues above, we propose a novel method for food photo enhancement. No original-enhanced image pairs are required except only original images. We investigate Food Faithful Color Semantic Rules in Enhanced Dataset Photo Enhancement (Faith-EDPE) and also carefully design a light generator which can preserve semantic relations among colors. We evaluate the proposed method on public benchmark databases to demonstrate the effectiveness of the proposed method through visual results and user studies.
图像增强是图像处理领域的一个重要分支。一些现有的方法利用生成对抗网络(gan)来完成这项任务。然而,当应用于特定类型的图像时,它们有一些缺陷,比如食物照片。首先,需要大量原始增强图像对来训练具有数百万个参数的gan。这样的图像对的获取是昂贵的。其次,先前方法生成的增强图像颜色分布与原始图像不一致,这是意料之外的。为了解决上述问题,我们提出了一种新的食品照片增强方法。除了原始图像外,不需要原始增强图像对。我们研究了增强数据集照片增强(Faith-EDPE)中食物忠实的颜色语义规则,并精心设计了一个能保持颜色之间语义关系的光发生器。我们在公共基准数据库上评估了所提出的方法,通过可视化结果和用户研究来证明所提出方法的有效性。
{"title":"Food Photo Enhancer of One Sample Generative Adversarial Network","authors":"Shudan Wang, Liang Sun, Weiming Dong, Yong Zhang","doi":"10.1145/3338533.3366605","DOIUrl":"https://doi.org/10.1145/3338533.3366605","url":null,"abstract":"Image enhancement is an important branch in the field of image processing. A few existing methods leverage Generative Adversarial Networks (GANs) for this task. However, they have several defects when applied to a specific type of images, such as food photo. First, a large set of original-enhanced image pairs are required to train GANs that have millions of parameters. Such image pairs are expensive to acquire. Second, color distribution of enhanced images generated by previous methods is not consistent with the original ones, which is not expected. To alleviate the issues above, we propose a novel method for food photo enhancement. No original-enhanced image pairs are required except only original images. We investigate Food Faithful Color Semantic Rules in Enhanced Dataset Photo Enhancement (Faith-EDPE) and also carefully design a light generator which can preserve semantic relations among colors. We evaluate the proposed method on public benchmark databases to demonstrate the effectiveness of the proposed method through visual results and user studies.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"11 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134574624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Feature Interaction Embedding for Pair Matching Prediction 基于深度特征交互嵌入的配对预测
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366597
Luwei Zhang, Xueting Wang, T. Yamasaki
Online dating services have become popular in modern society. Pair matching prediction between two users in these services can help efficiently increase the possibility of finding their life partners. Deep learning based methods with automatic feature interaction functions such as Factorization Machines (FM) and cross network of Deep & Cross Network (DCN) can model sparse categorical features, which are effective to many recommendation tasks of web applications. To solve the partner recommendation task, we improve these FM-based deep models and DCN by enhancing the representation of feature interaction embedding and proposing a novel design of interaction layer avoiding information loss. Through the experiments on two real-world datasets of two online dating companies, we demonstrate the superior performances of our proposed designs.
在线约会服务在现代社会已经变得很流行。在这些服务中,对两个用户之间的配对预测可以有效地提高他们找到生活伴侣的可能性。基于深度学习的具有自动特征交互功能的方法,如Factorization Machines (FM)和cross network of Deep & cross network (DCN),可以对稀疏分类特征进行建模,对web应用的许多推荐任务都是有效的。为了解决伙伴推荐任务,我们通过增强特征交互嵌入的表示,提出了一种避免信息丢失的交互层设计,对这些基于fm的深度模型和DCN进行了改进。通过两家在线约会公司的两个真实数据集的实验,我们证明了我们提出的设计的优越性能。
{"title":"Deep Feature Interaction Embedding for Pair Matching Prediction","authors":"Luwei Zhang, Xueting Wang, T. Yamasaki","doi":"10.1145/3338533.3366597","DOIUrl":"https://doi.org/10.1145/3338533.3366597","url":null,"abstract":"Online dating services have become popular in modern society. Pair matching prediction between two users in these services can help efficiently increase the possibility of finding their life partners. Deep learning based methods with automatic feature interaction functions such as Factorization Machines (FM) and cross network of Deep & Cross Network (DCN) can model sparse categorical features, which are effective to many recommendation tasks of web applications. To solve the partner recommendation task, we improve these FM-based deep models and DCN by enhancing the representation of feature interaction embedding and proposing a novel design of interaction layer avoiding information loss. Through the experiments on two real-world datasets of two online dating companies, we demonstrate the superior performances of our proposed designs.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"102 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127678914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Salient Time Slice Pruning and Boosting for Person-Scene Instance Search in TV Series 基于显著时间片的电视剧人-场景实例搜索
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366594
Z. Wang, Fan Yang, S. Satoh
It is common that TV audiences want to quickly browse scenes with certain actors in TV series. Since 2016, the TREC Video Retrieval Evaluation (TRECVID) Instance Search (INS) task has started to focus on identifying a target person in a target scene simultaneously. In this paper, we name this kind of task as P-S INS (Person-Scene Instance Search). To find out P-S instances, most approaches search person and scene separately, and then directly combine the results together by addition or multiplication. However, we find that person and scene INS modules are not always effective at the same time, or they may suppress each other in some situations. Aggregating the results shot after shot is not a good choice. Luckily, for the TV series, video shots are arranged in chronological order. We extend our focus from time point (single video shot) to time slice (multiple consecutive video shots) in the time-line. Through detecting salient time slices, we prune the data. Through evaluating the importance of salient time slices, we boost the aggregation results. Extensive experiments on the large-scale TRECVID INS dataset demonstrate the effectiveness of the proposed method.
电视观众想要快速浏览电视剧中某些演员的场景是很常见的。自2016年以来,TREC视频检索评估(TRECVID)实例搜索(INS)任务开始专注于同时识别目标场景中的目标人物。本文将这类任务命名为P-S - INS (Person-Scene Instance Search)。为了找出P-S实例,大多数方法是分别搜索人和场景,然后直接通过加法或乘法将结果组合在一起。然而,我们发现人物和场景INS模块并不总是同时有效,或者在某些情况下它们可能会相互抑制。一个接一个地汇总结果并不是一个好的选择。幸运的是,对于电视剧来说,视频镜头是按时间顺序排列的。我们将焦点从时间点(单个视频镜头)扩展到时间线上的时间片(多个连续视频镜头)。通过检测显著性时间片,对数据进行修剪。通过对显著时间片的重要性进行评价,增强了聚合结果。在大规模TRECVID INS数据集上的大量实验证明了该方法的有效性。
{"title":"Salient Time Slice Pruning and Boosting for Person-Scene Instance Search in TV Series","authors":"Z. Wang, Fan Yang, S. Satoh","doi":"10.1145/3338533.3366594","DOIUrl":"https://doi.org/10.1145/3338533.3366594","url":null,"abstract":"It is common that TV audiences want to quickly browse scenes with certain actors in TV series. Since 2016, the TREC Video Retrieval Evaluation (TRECVID) Instance Search (INS) task has started to focus on identifying a target person in a target scene simultaneously. In this paper, we name this kind of task as P-S INS (Person-Scene Instance Search). To find out P-S instances, most approaches search person and scene separately, and then directly combine the results together by addition or multiplication. However, we find that person and scene INS modules are not always effective at the same time, or they may suppress each other in some situations. Aggregating the results shot after shot is not a good choice. Luckily, for the TV series, video shots are arranged in chronological order. We extend our focus from time point (single video shot) to time slice (multiple consecutive video shots) in the time-line. Through detecting salient time slices, we prune the data. Through evaluating the importance of salient time slices, we boost the aggregation results. Extensive experiments on the large-scale TRECVID INS dataset demonstrate the effectiveness of the proposed method.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"166 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116111026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Fast and Accurately Measuring Crack Width via Cascade Principal Component Analysis 利用级联主成分分析法快速准确地测量裂缝宽度
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366578
Lijuan Duan, Huiling Geng, Jun Zeng, Junbiao Pang, Qingming Huang
Crack width is an important indicator to diagnose the safety of constructions, e.g., asphalt road, concrete bridge. In practice, measuring crack width is a challenge task: (1) the irregular and non-smooth boundary makes the traditional method inefficient; (2) pixel-wise measurement guarantees the accuracy of a system and (3) understanding the damage of constructions from any pre-selected points is a mandatary requirement. To address these problems, we propose a cascade Principal Component Analysis (PCA) to efficiently measure crack width from images. Firstly, the binary crack image is obtained to describe the crack via the off-the-shelf crack detection algorithms. Secondly, given a pre-selected point, PCA is used to find the main axis of a crack. Thirdly, Robust Principal Component Analysis (RPCA) is proposed to compute the main axis of a crack with a irregular boundary. We evaluate the proposed method on a real data set. The experimental results show that the proposed method achieves the state-of-the-art performances in terms of efficiency and effectiveness.
裂缝宽度是诊断沥青路面、混凝土桥梁等建筑物安全性的重要指标。在实际应用中,裂缝宽度的测量是一项具有挑战性的任务:(1)边界的不规则和非光滑使传统方法效率低下;(2)逐像素测量保证了系统的准确性;(3)从任何预先选定的点了解建筑物的损坏是强制性要求。为了解决这些问题,我们提出了一个级联主成分分析(PCA)来有效地从图像中测量裂缝宽度。首先,利用现有的裂纹检测算法获得二值裂纹图像来描述裂纹;其次,给出一个预先选定的点,用主成分分析法找到裂缝的主轴。第三,提出了鲁棒主成分分析(RPCA)方法来计算具有不规则边界的裂纹的主轴。我们在一个真实的数据集上对所提出的方法进行了评估。实验结果表明,该方法在效率和有效性方面都达到了最先进的性能。
{"title":"Fast and Accurately Measuring Crack Width via Cascade Principal Component Analysis","authors":"Lijuan Duan, Huiling Geng, Jun Zeng, Junbiao Pang, Qingming Huang","doi":"10.1145/3338533.3366578","DOIUrl":"https://doi.org/10.1145/3338533.3366578","url":null,"abstract":"Crack width is an important indicator to diagnose the safety of constructions, e.g., asphalt road, concrete bridge. In practice, measuring crack width is a challenge task: (1) the irregular and non-smooth boundary makes the traditional method inefficient; (2) pixel-wise measurement guarantees the accuracy of a system and (3) understanding the damage of constructions from any pre-selected points is a mandatary requirement. To address these problems, we propose a cascade Principal Component Analysis (PCA) to efficiently measure crack width from images. Firstly, the binary crack image is obtained to describe the crack via the off-the-shelf crack detection algorithms. Secondly, given a pre-selected point, PCA is used to find the main axis of a crack. Thirdly, Robust Principal Component Analysis (RPCA) is proposed to compute the main axis of a crack with a irregular boundary. We evaluate the proposed method on a real data set. The experimental results show that the proposed method achieves the state-of-the-art performances in terms of efficiency and effectiveness.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116321583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Session details: Best Paper Session 会议细节:最佳论文会议
Pub Date : 2019-12-15 DOI: 10.1145/3379189
Wen-Huang Cheng
{"title":"Session details: Best Paper Session","authors":"Wen-Huang Cheng","doi":"10.1145/3379189","DOIUrl":"https://doi.org/10.1145/3379189","url":null,"abstract":"","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127687230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shifted Spatial-Spectral Convolution for Deep Neural Networks 深度神经网络的移位空间-频谱卷积
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366575
Yuhao Xu, Hideki Nakayama
Deep convolutional neural networks (CNNs) extract local features and learn spatial representations via convolutions in the spatial domain. Beyond the spatial information, some works also manage to capture the spectral information in the frequency domain by domain switching methods like discrete Fourier transform (DFT) and discrete cosine transform (DCT). However, most works only pay attention to a single domain, which is prone to ignoring other important features. In this work, we propose a novel network structure to combine spatial and spectral convolutions, and extract features in both spatial and frequency domains. The input channels are divided into two groups for spatial and spectral representations respectively, and then integrated for feature fusion. Meanwhile, we design a channel-shifting mechanism to ensure both spatial and spectral information of every channel are equally and adequately obtained throughout the deep networks. Experimental results demonstrate that compared with state-of-the-art CNN models in a single domain, our shifted spatial-spectral convolution based networks achieve better performance on image classification datasets including CIFAR10, CIFAR100 and SVHN, with considerably fewer parameters.
深度卷积神经网络(cnn)通过空间域的卷积提取局部特征并学习空间表征。除了空间信息之外,一些研究还设法通过离散傅立叶变换(DFT)和离散余弦变换(DCT)等域切换方法捕获频域的频谱信息。然而,大多数作品只关注一个领域,这很容易忽略其他重要的功能。在这项工作中,我们提出了一种新的网络结构来结合空间和频谱卷积,并在空间和频域提取特征。将输入通道分别分成两组进行空间表示和光谱表示,然后进行特征融合。同时,我们设计了一种信道移位机制,以确保在整个深度网络中每个信道的空间和频谱信息都得到平等和充分的获取。实验结果表明,与最先进的单一域CNN模型相比,我们基于移位空间光谱卷积的网络在图像分类数据集(包括CIFAR10, CIFAR100和SVHN)上具有更好的性能,且参数少得多。
{"title":"Shifted Spatial-Spectral Convolution for Deep Neural Networks","authors":"Yuhao Xu, Hideki Nakayama","doi":"10.1145/3338533.3366575","DOIUrl":"https://doi.org/10.1145/3338533.3366575","url":null,"abstract":"Deep convolutional neural networks (CNNs) extract local features and learn spatial representations via convolutions in the spatial domain. Beyond the spatial information, some works also manage to capture the spectral information in the frequency domain by domain switching methods like discrete Fourier transform (DFT) and discrete cosine transform (DCT). However, most works only pay attention to a single domain, which is prone to ignoring other important features. In this work, we propose a novel network structure to combine spatial and spectral convolutions, and extract features in both spatial and frequency domains. The input channels are divided into two groups for spatial and spectral representations respectively, and then integrated for feature fusion. Meanwhile, we design a channel-shifting mechanism to ensure both spatial and spectral information of every channel are equally and adequately obtained throughout the deep networks. Experimental results demonstrate that compared with state-of-the-art CNN models in a single domain, our shifted spatial-spectral convolution based networks achieve better performance on image classification datasets including CIFAR10, CIFAR100 and SVHN, with considerably fewer parameters.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131335939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Residual Graph Convolutional Networks for Zero-Shot Learning 零学习残差图卷积网络
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366552
Jiwei Wei, Yang Yang, Jingjing Li, Lei Zhu, Lin Zuo, Heng Tao Shen
Most existing Zero-Shot Learning (ZSL) approaches adopt the semantic space as a bridge to classify unseen categories. However, it is difficult to transfer knowledge from seen categories to unseen categories through semantic space, since the correlations among categories are uncertain and ambiguous in the semantic space. In this paper, we formulated zero-shot learning as a classifier weight regression problem. Specifically, we propose a novel Residual Graph Convolution Network (ResGCN) which takes word embeddings and knowledge graph as inputs and outputs a visual classifier for each category. ResGCN can effectively alleviate the problem of over-smoothing and over-fitting. During the test, an unseen image can be classified by ranking the inner product of its visual feature and predictive visual classifiers. Moreover, we provide a new method to build a better knowledge graph. Our approach not only further enhances the correlations among categories, but also makes it easy to add new categories to the knowledge graph. Experiments conducted on the large-scale ImageNet 2011 21K dataset demonstrate that our method significantly outperforms existing state-of-the-art approaches.
大多数现有的零间隔学习(Zero-Shot Learning, ZSL)方法采用语义空间作为桥梁对未见过的类别进行分类。然而,由于类别之间的相关性在语义空间中是不确定的和模糊的,因此很难通过语义空间将知识从可见类别转移到不可见类别。在本文中,我们将零次学习表述为一个分类器权重回归问题。具体来说,我们提出了一种新的残差图卷积网络(ResGCN),它以词嵌入和知识图作为输入,并为每个类别输出一个视觉分类器。ResGCN可以有效地缓解过平滑和过拟合的问题。在测试过程中,通过对未见图像的视觉特征和预测视觉分类器的内积进行排序,可以对未见图像进行分类。此外,我们还提供了一种构建更好的知识图谱的新方法。我们的方法不仅进一步增强了类别之间的相关性,而且使向知识图添加新类别变得容易。在大规模ImageNet 2011 21K数据集上进行的实验表明,我们的方法明显优于现有的最先进的方法。
{"title":"Residual Graph Convolutional Networks for Zero-Shot Learning","authors":"Jiwei Wei, Yang Yang, Jingjing Li, Lei Zhu, Lin Zuo, Heng Tao Shen","doi":"10.1145/3338533.3366552","DOIUrl":"https://doi.org/10.1145/3338533.3366552","url":null,"abstract":"Most existing Zero-Shot Learning (ZSL) approaches adopt the semantic space as a bridge to classify unseen categories. However, it is difficult to transfer knowledge from seen categories to unseen categories through semantic space, since the correlations among categories are uncertain and ambiguous in the semantic space. In this paper, we formulated zero-shot learning as a classifier weight regression problem. Specifically, we propose a novel Residual Graph Convolution Network (ResGCN) which takes word embeddings and knowledge graph as inputs and outputs a visual classifier for each category. ResGCN can effectively alleviate the problem of over-smoothing and over-fitting. During the test, an unseen image can be classified by ranking the inner product of its visual feature and predictive visual classifiers. Moreover, we provide a new method to build a better knowledge graph. Our approach not only further enhances the correlations among categories, but also makes it easy to add new categories to the knowledge graph. Experiments conducted on the large-scale ImageNet 2011 21K dataset demonstrate that our method significantly outperforms existing state-of-the-art approaches.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"61 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130653052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Session details: Human Analysis in Multimedia 会议细节:多媒体中的人类分析
Pub Date : 2019-12-15 DOI: 10.1145/3379193
Bingkun Bao
{"title":"Session details: Human Analysis in Multimedia","authors":"Bingkun Bao","doi":"10.1145/3379193","DOIUrl":"https://doi.org/10.1145/3379193","url":null,"abstract":"","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"23 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134473366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-source User Attribute Inference based on Hierarchical Auto-encoder 基于分层自编码器的多源用户属性推断
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366599
Boyu Zhang, Xiangguo Ding, Xiaowen Huang, Yang Cao, J. Sang, Jian Yu
With the rapid development of Online Social Networks (OSNs), it is crucial to construct users' portraits from their dynamic behaviors to address the increasing needs for customized information services. Previous work on user attribute inference mainly concentrated on developing advanced features/models or exploiting external information and knowledge but ignored the contradiction between dynamic behaviors and stable demographic attributes, which results in deviation of user understanding To address the contradiction and accurately infer the user attributes, we propose a Multi-source User Attribute Inference algorithm based on Hierarchical Auto-encoder (MUAI-HAE). The basic idea is that: the shared patterns among the same individual's behaviors on different OSNs well indicate his/her stable demographic attributes. The hierarchical autoencoder is introduced to realize this idea by discovering the underlying non-linear correlation between different OSNs. The unsupervised scheme in shared pattern learning alleviates the requirements for the cross-OSN user account and improves the practicability. Off-the-shelf classification methods are then utilized to infer user attributes from the derived shared behavior patterns. The experiments on the real-world datasets from three OSNs demonstrate the effectiveness of the proposed method.
随着在线社交网络(Online Social Networks,简称OSNs)的快速发展,从用户的动态行为中构建用户画像,以满足日益增长的个性化信息服务需求至关重要。以往的用户属性推断工作主要集中在开发高级特征/模型或利用外部信息和知识,而忽略了动态行为与稳定的人口统计属性之间的矛盾,导致用户理解偏差。为了解决这一矛盾,准确推断用户属性,我们提出了一种基于分层自编码器(MUAI-HAE)的多源用户属性推断算法。其基本思想是:同一个体在不同osn上的共同行为模式很好地反映了其稳定的人口统计属性。分层自编码器通过发现不同osn之间潜在的非线性相关性来实现这一思想。共享模式学习中的无监督方案减轻了对跨osn用户账号的要求,提高了实用性。然后利用现成的分类方法从派生的共享行为模式推断用户属性。在三个osn的实际数据集上的实验证明了该方法的有效性。
{"title":"Multi-source User Attribute Inference based on Hierarchical Auto-encoder","authors":"Boyu Zhang, Xiangguo Ding, Xiaowen Huang, Yang Cao, J. Sang, Jian Yu","doi":"10.1145/3338533.3366599","DOIUrl":"https://doi.org/10.1145/3338533.3366599","url":null,"abstract":"With the rapid development of Online Social Networks (OSNs), it is crucial to construct users' portraits from their dynamic behaviors to address the increasing needs for customized information services. Previous work on user attribute inference mainly concentrated on developing advanced features/models or exploiting external information and knowledge but ignored the contradiction between dynamic behaviors and stable demographic attributes, which results in deviation of user understanding To address the contradiction and accurately infer the user attributes, we propose a Multi-source User Attribute Inference algorithm based on Hierarchical Auto-encoder (MUAI-HAE). The basic idea is that: the shared patterns among the same individual's behaviors on different OSNs well indicate his/her stable demographic attributes. The hierarchical autoencoder is introduced to realize this idea by discovering the underlying non-linear correlation between different OSNs. The unsupervised scheme in shared pattern learning alleviates the requirements for the cross-OSN user account and improves the practicability. Off-the-shelf classification methods are then utilized to infer user attributes from the derived shared behavior patterns. The experiments on the real-world datasets from three OSNs demonstrate the effectiveness of the proposed method.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133059206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Excluding the Misleading Relatedness Between Attributes in Multi-Task Attribute Recognition Network 多任务属性识别网络中属性间误导性关联的排除
Pub Date : 2019-12-15 DOI: 10.1145/3338533.3366555
Sirui Cai, Yuchun Fang
In the attribute recognition area, attributes that are unrelated in the real world may have a high co-occurrence rate in a dataset due to the dataset bias, which forms a misleading relatedness. A neural network, especially a multi-task neural network, trained on this dataset would learn this relatedness, and be misled when it is used in practice. In this paper, we propose Share-and-Compete Multi-Task deep learning (SCMTL) model to handle this problem. This model uses adversarial training methods to enhance competition between unrelated attributes while keeping sharing between related attributes, making the task-specific layer of the multi-task model to be more specific and thus rule out the misleading relatedness between the unrelated attributes. Experiments performed on elaborately designed datasets show that the proposed model outperforms the single task neural network and the traditional multi-task neural network in the situation mentioned above.
在属性识别领域,由于数据集偏差,现实世界中不相关的属性在数据集中可能会有很高的共现率,从而形成误导性的相关性。在这个数据集上训练的神经网络,特别是多任务神经网络,会学习到这种相关性,在实际应用中会被误导。本文提出了共享竞争多任务深度学习(SCMTL)模型来解决这一问题。该模型采用对抗性训练方法,增强不相关属性之间的竞争,同时保持相关属性之间的共享,使多任务模型的任务特定层更加具体,从而排除不相关属性之间误导性的相关性。在精心设计的数据集上进行的实验表明,该模型在上述情况下优于单任务神经网络和传统的多任务神经网络。
{"title":"Excluding the Misleading Relatedness Between Attributes in Multi-Task Attribute Recognition Network","authors":"Sirui Cai, Yuchun Fang","doi":"10.1145/3338533.3366555","DOIUrl":"https://doi.org/10.1145/3338533.3366555","url":null,"abstract":"In the attribute recognition area, attributes that are unrelated in the real world may have a high co-occurrence rate in a dataset due to the dataset bias, which forms a misleading relatedness. A neural network, especially a multi-task neural network, trained on this dataset would learn this relatedness, and be misled when it is used in practice. In this paper, we propose Share-and-Compete Multi-Task deep learning (SCMTL) model to handle this problem. This model uses adversarial training methods to enhance competition between unrelated attributes while keeping sharing between related attributes, making the task-specific layer of the multi-task model to be more specific and thus rule out the misleading relatedness between the unrelated attributes. Experiments performed on elaborately designed datasets show that the proposed model outperforms the single task neural network and the traditional multi-task neural network in the situation mentioned above.","PeriodicalId":273086,"journal":{"name":"Proceedings of the ACM Multimedia Asia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131321149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the ACM Multimedia Asia
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1