Pub Date : 2020-05-13DOI: 10.5772/intechopen.90930
A. Ilangovan, T. P. A. Krishna
Quinone moieties in general and heterofunctionalized or heterofused quinones in particular find application in several fields such as medicinal chemistry, natural products, and functional materials. Due to its striking applications, scientists developed useful methods for the synthesis of quinone derivatives. C ▬ H activation strategy is a fast-developing and straightforward concept, used in the construction of a diverse variety of bonds such as carbon ▬ carbon (C ▬ C) and carbon ▬ hetero (C ▬ O/N/ S/P) bonds and also used is the heterofunctionalization/heterocyclization of quinones. Such approaches are useful in making use of unfunctionalized quinones for the synthesis of heterofunctionalized or heterocycle-fused quinones. The redox active nature and ligand-like properties make it difficult to carryout C ▬ H activation on quinones. In this chapter we summarized recent developments on strategies used for C ▬ hetero atom bond formation on quinones via C ▬ H activation, leading to heterofunctionalization and synthesis of heterofused quinones.
{"title":"C▬H Activation Strategies for Heterofunctionalization and Heterocyclization on Quinones: Application in the Synthesis of Bioactive Compounds","authors":"A. Ilangovan, T. P. A. Krishna","doi":"10.5772/intechopen.90930","DOIUrl":"https://doi.org/10.5772/intechopen.90930","url":null,"abstract":"Quinone moieties in general and heterofunctionalized or heterofused quinones in particular find application in several fields such as medicinal chemistry, natural products, and functional materials. Due to its striking applications, scientists developed useful methods for the synthesis of quinone derivatives. C ▬ H activation strategy is a fast-developing and straightforward concept, used in the construction of a diverse variety of bonds such as carbon ▬ carbon (C ▬ C) and carbon ▬ hetero (C ▬ O/N/ S/P) bonds and also used is the heterofunctionalization/heterocyclization of quinones. Such approaches are useful in making use of unfunctionalized quinones for the synthesis of heterofunctionalized or heterocycle-fused quinones. The redox active nature and ligand-like properties make it difficult to carryout C ▬ H activation on quinones. In this chapter we summarized recent developments on strategies used for C ▬ hetero atom bond formation on quinones via C ▬ H activation, leading to heterofunctionalization and synthesis of heterofused quinones.","PeriodicalId":275216,"journal":{"name":"Organic Synthesis - A Nascent Relook [Working Title]","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126549926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-05-13DOI: 10.5772/intechopen.90949
A. Ilangovan, Sakthivel Pandaram, T. Duraisamy
N,N-Dialkyl amides such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), are common polar solvents, finds application as a multipurpose reagent in synthetic organic chemistry. They are cheap, readily available and versatile synthons that can be used in a variety of ways to generate different functional groups. In recent years, many publications showcasing, excellent and useful applications of N,N-dialkyl amides in amination (R-NMe2), formylation (R-CHO), as a single carbon source (R-C), methylene group (R-CH2), cyanation (R-CN), amidoalkylation (-R), aminocarbonylation (R-CONMe2), carbonylation (R-CO) and heterocycle synthesis appeared. This chapter highlights important developments in the employment of N,N-dialkyl amides in the synthesis of heterocycles and functionalization of acyclic systems. Although some review articles covered the application of DMF and/or DMA in organic functional group transformations, there is no specialized review on their application in the synthesis of cyclic and acyclic systems.
{"title":"N,N-Dialkyl Amides as Versatile Synthons for Synthesis of Heterocycles and Acyclic Systems","authors":"A. Ilangovan, Sakthivel Pandaram, T. Duraisamy","doi":"10.5772/intechopen.90949","DOIUrl":"https://doi.org/10.5772/intechopen.90949","url":null,"abstract":"N,N-Dialkyl amides such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMA), are common polar solvents, finds application as a multipurpose reagent in synthetic organic chemistry. They are cheap, readily available and versatile synthons that can be used in a variety of ways to generate different functional groups. In recent years, many publications showcasing, excellent and useful applications of N,N-dialkyl amides in amination (R-NMe2), formylation (R-CHO), as a single carbon source (R-C), methylene group (R-CH2), cyanation (R-CN), amidoalkylation (-R), aminocarbonylation (R-CONMe2), carbonylation (R-CO) and heterocycle synthesis appeared. This chapter highlights important developments in the employment of N,N-dialkyl amides in the synthesis of heterocycles and functionalization of acyclic systems. Although some review articles covered the application of DMF and/or DMA in organic functional group transformations, there is no specialized review on their application in the synthesis of cyclic and acyclic systems.","PeriodicalId":275216,"journal":{"name":"Organic Synthesis - A Nascent Relook [Working Title]","volume":"146 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123321619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-04-24DOI: 10.5772/intechopen.92104
David Ferguson
Overall these are selections from the total synthesis of vitamin B12. Through the use of selected reactions in the reaction schema, hypothetical mechanisms have been provided. It is the hope of the author, that it will provide insight for students in organic chemistry. Additionally the focus was on the Eschenmoser’s Variant of the total synthesis of vitamin B12. This required the reviewing of the lectures of Dr. A. Eschenmoser as well as reviews of the different mechanistic process involved. Due to constraints all of the mechanisms have not been developed, but selected ones have been provided and shown for understanding.
{"title":"Synthetic Studies of Vitamin B12","authors":"David Ferguson","doi":"10.5772/intechopen.92104","DOIUrl":"https://doi.org/10.5772/intechopen.92104","url":null,"abstract":"Overall these are selections from the total synthesis of vitamin B12. Through the use of selected reactions in the reaction schema, hypothetical mechanisms have been provided. It is the hope of the author, that it will provide insight for students in organic chemistry. Additionally the focus was on the Eschenmoser’s Variant of the total synthesis of vitamin B12. This required the reviewing of the lectures of Dr. A. Eschenmoser as well as reviews of the different mechanistic process involved. Due to constraints all of the mechanisms have not been developed, but selected ones have been provided and shown for understanding.","PeriodicalId":275216,"journal":{"name":"Organic Synthesis - A Nascent Relook [Working Title]","volume":"46 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126265444","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}