首页 > 最新文献

Computer Physics Communications最新文献

英文 中文
A quantum Monte Carlo algorithm for arbitrary high-spin Hamiltonians 任意高自旋哈密顿量的量子蒙特卡罗算法
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-16 DOI: 10.1016/j.cpc.2026.110037
Arman Babakhani , Lev Barash , Itay Hen
We present a universal quantum Monte Carlo algorithm for simulating arbitrary high-spin (spin greater than 1/2) Hamiltonians, based on the recently developed permutation matrix representation (PMR) framework. Our approach extends a previously developed PMR-QMC method for spin-1/2 Hamiltonians [Phys. Rev. Research 6, 013281 (2024)]. Because it does not rely on a local bond decomposition, the method applies equally well to models with arbitrary connectivities, long-range and multi-spin interactions, and its closed-walk formulation allows a natural analysis of sign-problem conditions in terms of cycle weights. To demonstrate its applicability and versatility, we apply our method to spin-1 and spin-3/2 quantum Heisenberg models on the square lattice, as well as to randomly generated high-spin Hamiltonians. Additionally, we show how the approach naturally extends to general Hamiltonians involving mixtures of particle species, including bosons and fermions. We have made our program code freely accessible on GitHub.
基于最近发展的排列矩阵表示(PMR)框架,提出了一种用于模拟任意高自旋(自旋大于1/2)哈密顿量的通用量子蒙特卡罗算法。我们的方法扩展了先前开发的自旋-1/2哈密顿量的PMR-QMC方法[物理学]。生物工程学报,2016,29(5):391 - 391。由于它不依赖于局部键分解,因此该方法同样适用于具有任意连度、远程和多自旋相互作用的模型,并且其闭合行走公式允许根据循环权重对符号问题条件进行自然分析。为了证明其适用性和通用性,我们将该方法应用于方形晶格上的自旋-1和自旋-3/2量子海森堡模型,以及随机生成的高自旋哈密顿量。此外,我们展示了该方法如何自然地扩展到包括玻色子和费米子在内的粒子种混合物的一般哈密顿量。我们已经在GitHub上免费提供了我们的程序代码。
{"title":"A quantum Monte Carlo algorithm for arbitrary high-spin Hamiltonians","authors":"Arman Babakhani ,&nbsp;Lev Barash ,&nbsp;Itay Hen","doi":"10.1016/j.cpc.2026.110037","DOIUrl":"10.1016/j.cpc.2026.110037","url":null,"abstract":"<div><div>We present a universal quantum Monte Carlo algorithm for simulating arbitrary high-spin (spin greater than 1/2) Hamiltonians, based on the recently developed permutation matrix representation (PMR) framework. Our approach extends a previously developed PMR-QMC method for spin-1/2 Hamiltonians [Phys. Rev. Research 6, 013281 (2024)]. Because it does not rely on a local bond decomposition, the method applies equally well to models with arbitrary connectivities, long-range and multi-spin interactions, and its closed-walk formulation allows a natural analysis of sign-problem conditions in terms of cycle weights. To demonstrate its applicability and versatility, we apply our method to spin-1 and spin-3/2 quantum Heisenberg models on the square lattice, as well as to randomly generated high-spin Hamiltonians. Additionally, we show how the approach naturally extends to general Hamiltonians involving mixtures of particle species, including bosons and fermions. We have made our program code freely accessible on GitHub.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110037"},"PeriodicalIF":3.4,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146073662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
plasmonX: An open-source code for nanoplasmonics plasmonX:纳米等离子体学的开源代码
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-15 DOI: 10.1016/j.cpc.2026.110035
Tommaso Giovannini , Pablo Grobas Illobre , Piero Lafiosca , Luca Nicoli , Luca Bonatti , Stefano Corni , Chiara Cappelli
We present the first public release of plasmonX, a novel open-source code for simulating the plasmonic response of complex nanostructures. The code supports both fully atomistic and implicit descriptions of nanomaterials. In particular, it employs the frequency-dependent fluctuating charges (ωFQ) and dipoles (ωFQFμ) models to describe the response properties of atomistic structures, including simple and d-metals, graphene-based structures, and multi-metal nanostructures. For implicit representations, the Boundary Element Method is implemented in both the dielectric polarizable continuum model (DPCM) and integral equation formalism (IEF-PCM) variants. The distribution also includes a post-processing module that enables analysis of electric field-induced properties such as charge density and electric field patterns.

PROGRAM SUMMARY

Program Title: plasmonX CPC Library link to program files: https://doi.org/10.17632/zcd8fb4457.1 Developer’s repository link: https://github.com/plasmonX/plasmonX Licensing provisions: GPLv3 Programming language: Fortran 2008, Python Nature of problem: Simulating the response properties of plasmonic metallic and graphene-based nanomaterials. Solution method: Fully atomistic frequency-dependent fluctuating charges (ωFQ) [1,2] and dipoles (ωFQFμ) [3] models and implicit, non-atomistic Boundary Element Methods (BEM) [4]. The approaches are implemented within the quasistatic approximation. Additional comments including restrictions and unusual features:The program has been mainly tested by using gfortran (versions 9–13) combined with the Math Kernel Library (MKL) provided by Intel.
References:
  • [1
    ]T. Giovannini, M. Rosa, S. Corni, C. Cappelli, A classical picture of subnanometer junctions: an atomistic Drude approach to nanoplasmonics, Nanoscale 11 (13) (2019) 6004-6015
  • [2
    ]T. Giovannini, L. Bonatti, M. Polini, C. Cappelli, Graphene plasmonics: Fully atomistic approach for realistic structures, J. Phys. Chem. Lett. 11 (18) (2020) 7595-7602.
  • [3
    ]T. Giovannini, L. Bonatti, P. Lafiosca, L. Nicoli, M. Castagnola, P. G. Illobre, S. Corni, C. Cappelli, Do we really need quantum mechanics to describe plasmonic properties of metal nanostructures?, ACS Photonics 9 (9) (2022) 3025-3034.
  • [4
    ]F. J. García de Abajo, A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics, Phys. Rev. B 65 (11) (2002) 115418.
我们提出了第一个公开发布的plasmonX,一个新颖的开源代码,用于模拟复杂纳米结构的等离子体响应。代码支持纳米材料的完全原子描述和隐式描述。特别是,它采用频率相关的波动电荷(ωFQ)和偶极子(ωFQFμ)模型来描述原子结构的响应特性,包括简单金属和d金属,石墨烯基结构和多金属纳米结构。对于隐式表示,边界元方法在介电极化连续介质模型(DPCM)和积分方程形式(IEF-PCM)变体中实现。该分布还包括一个后处理模块,可以分析电场诱导的特性,如电荷密度和电场模式。项目摘要项目标题:plasmonX CPC库链接到程序文件:https://doi.org/10.17632/zcd8fb4457.1开发人员的存储库链接:https://github.com/plasmonX/plasmonX许可条款:GPLv3编程语言:Fortran 2008, Python问题的性质:模拟等离子体金属和石墨烯基纳米材料的响应特性。求解方法:全原子频率相关波动电荷(ωFQ)[1,2]和偶极子(ωFQFμ)[3]模型和隐式非原子边界元方法(BEM)[4]。这些方法是在准静态近似内实现的。该程序主要通过使用gfortran(版本9-13)和intel提供的数学内核库(MKL)进行测试。参考:[1]T。张晓明,张晓明,张晓明,等。亚纳米等离子体动力学的研究进展,光子学报,36 (5)(2019):649 - 649 [j] . [j]。李建军,李建军,李建军,等。石墨烯等离子体:真实结构的全原子方法,物理学报。化学。科学通报,11(18)(2020)7595-7602。Giovannini, L. Bonatti, P. Lafiosca, L. Nicoli, M. Castagnola, P. G. Illobre, S. Corni, C. Cappelli,我们真的需要量子力学来描述金属纳米结构的等离子体特性吗?王晓明,光电子学报9(9)(2022):3025-3034。J. García de Abajo, A. Howie,非均匀介质中电子能量损失的延迟场计算,物理学报。Rev. b65(11)(2002) 115418。
{"title":"plasmonX: An open-source code for nanoplasmonics","authors":"Tommaso Giovannini ,&nbsp;Pablo Grobas Illobre ,&nbsp;Piero Lafiosca ,&nbsp;Luca Nicoli ,&nbsp;Luca Bonatti ,&nbsp;Stefano Corni ,&nbsp;Chiara Cappelli","doi":"10.1016/j.cpc.2026.110035","DOIUrl":"10.1016/j.cpc.2026.110035","url":null,"abstract":"<div><div>We present the first public release of <span>plasmonX</span>, a novel open-source code for simulating the plasmonic response of complex nanostructures. The code supports both fully atomistic and implicit descriptions of nanomaterials. In particular, it employs the frequency-dependent fluctuating charges (<em>ω</em>FQ) and dipoles (<em>ω</em>FQF<em>μ</em>) models to describe the response properties of atomistic structures, including simple and <em>d</em>-metals, graphene-based structures, and multi-metal nanostructures. For implicit representations, the Boundary Element Method is implemented in both the dielectric polarizable continuum model (DPCM) and integral equation formalism (IEF-PCM) variants. The distribution also includes a post-processing module that enables analysis of electric field-induced properties such as charge density and electric field patterns.</div></div><div><h3>PROGRAM SUMMARY</h3><div><em>Program Title:</em> plasmonX <em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/zcd8fb4457.1</span><svg><path></path></svg></span> <em>Developer’s repository link:</em> <span><span>https://github.com/plasmonX/plasmonX</span><svg><path></path></svg></span> <em>Licensing provisions:</em> GPLv3 <em>Programming language:</em> Fortran 2008, Python <em>Nature of problem:</em> Simulating the response properties of plasmonic metallic and graphene-based nanomaterials. <em>Solution method:</em> Fully atomistic frequency-dependent fluctuating charges (<em>ω</em>FQ) [1,2] and dipoles (<em>ω</em>FQF<em>μ</em>) [3] models and implicit, non-atomistic Boundary Element Methods (BEM) [4]. The approaches are implemented within the quasistatic approximation. <em>Additional comments including restrictions and unusual features:</em>The program has been mainly tested by using gfortran (versions 9–13) combined with the Math Kernel Library (MKL) provided by Intel.</div><div><strong>References:</strong><ul><li><span>[1</span><span><div>]<em>T. Giovannini, M. Rosa, S. Corni, C. Cappelli, A classical picture of subnanometer junctions: an atomistic Drude approach to nanoplasmonics, Nanoscale 11 (13) (2019) 6004-6015</em></div></span></li><li><span>[2</span><span><div>]<em>T. Giovannini, L. Bonatti, M. Polini, C. Cappelli, Graphene plasmonics: Fully atomistic approach for realistic structures, J. Phys. Chem. Lett. 11 (18) (2020) 7595-7602.</em></div></span></li><li><span>[3</span><span><div>]<em>T. Giovannini, L. Bonatti, P. Lafiosca, L. Nicoli, M. Castagnola, P. G. Illobre, S. Corni, C. Cappelli, Do we really need quantum mechanics to describe plasmonic properties of metal nanostructures?, ACS Photonics 9 (9) (2022) 3025-3034.</em></div></span></li><li><span>[4</span><span><div>]<em>F. J. García de Abajo, A. Howie, Retarded field calculation of electron energy loss in inhomogeneous dielectrics, Phys. Rev. B 65 (11) (2002) 115418.</em></div></span></li></ul></div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"322 ","pages":"Article 110035"},"PeriodicalIF":3.4,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146076721","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SUperman: Efficient permanent computation on GPUs 超人:高效的gpu永久计算
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-15 DOI: 10.1016/j.cpc.2026.110027
Deniz Elbek , Fatih Taşyaran , Bora Uçar , Kamer Kaya
<div><div>The <em>permanent</em> is a function, defined for a square matrix, with applications in various domains including quantum computing, statistical physics, complexity theory, combinatorics, and graph theory. Its formula is similar to that of the determinant; however, unlike the determinant, its exact computation is #P-complete, i.e., there is no algorithm to compute the permanent in polynomial time unless P=NP. For an <em>n</em> × <em>n</em> matrix, the fastest algorithm has a time complexity of <span><math><mrow><mi>O</mi><mo>(</mo><msup><mn>2</mn><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msup><mi>n</mi><mo>)</mo></mrow></math></span>. Although supercomputers have been employed for permanent computation before, there is no work and, more importantly, no publicly available software that leverages cutting-edge High-Performance Computing accelerators such as GPUs. In this work, we design, develop, and investigate the performance of <span>SUperman</span>, a complete software suite that can compute matrix permanents on multiple nodes/GPUs on a cluster while handling various matrix types, e.g., real/complex/binary and sparse/dense, etc., with a unique treatment for each type. <span>SUperman</span> run on a single Nvidia A100 GPU is up to 86 ×  faster than a state-of-the-art parallel algorithm on 44 Intel Xeon cores running at 2.10GHz. Leveraging 192 GPUs, <span>SUperman</span> computes the permanent of a 62 × 62 matrix in 1.63 days, marking the largest reported permanent computation to date.</div><div>PROGRAM SUMMARY</div><div><em>Program Title:</em> <span>SUperman</span></div><div><em>CPC Library link to program files:</em> <span><span>https://doi.org/10.17632/5fhxcvfmrw.1</span><svg><path></path></svg></span></div><div><em>Developer’s repository link:</em> <span><span>https://github.com/SU-HPC/superman</span><svg><path></path></svg></span></div><div><em>Licensing provisions(please choose one):</em> MIT</div><div><em>Programming language:</em> <span>C++</span>, <span>CUDA</span></div><div><em>Nature of problem:</em></div><div>The permanent plays a crucial role in various fields such as quantum computing, statistical physics, combinatorics, and graph theory. Unlike the determinant, computing the permanent is #P-complete [1] and its exact computation has exponential complexity. Even the fastest known algorithms require time that grows exponentially with matrix dimensions, making the problem computationally intractable for large matrices. The state-of-the-art tools leverage supercomputers [2, 3], but there remains a notable gap in publicly available software that exploits modern High-Performance Computing accelerators, such as GPUs. This limitation makes the researchers who require efficient and scalable methods for permanent computation suffer, particularly when dealing with various matrix types (real, complex, binary, sparse, dense) in practical applications.</div><div><em>Solution method:</em> <span>SUperman</span> is a complete open-sourc
恒量是一个函数,定义为一个方阵,应用于各种领域,包括量子计算、统计物理、复杂性理论、组合学和图论。它的公式类似于行列式;然而,与行列式不同的是,它的精确计算是#P-完全的,即除非P=NP,否则没有算法可以在多项式时间内计算永久。对于n × n矩阵,最快的算法的时间复杂度为O(2n−1n)。虽然超级计算机以前被用于永久计算,但没有工作,更重要的是,没有公开可用的软件来利用尖端的高性能计算加速器,如gpu。在这项工作中,我们设计、开发并研究了SUperman的性能,这是一个完整的软件套件,可以在集群上的多个节点/ gpu上计算矩阵永久值,同时处理各种矩阵类型,例如实/复/二进制和稀疏/密集等,并对每种类型进行独特的处理。超人在单个Nvidia A100 GPU上运行的速度高达86 × ,比在44个Intel Xeon内核上运行的最先进的并行算法快2.10GHz。利用192个gpu,超人在1.63天内计算出62 × 62矩阵的永久值,这是迄今为止报道的最大的永久计算。项目简介项目名称:SUpermanCPC库链接到程序文件:https://doi.org/10.17632/5fhxcvfmrw.1Developer’s repository链接:https://github.com/SU-HPC/supermanLicensing条款(请选择一项):mit编程语言:c++, cuda问题的性质:永久在量子计算、统计物理、组合学、图论等各个领域发挥着至关重要的作用。与行列式不同,计算永久式是#P-complete[1],其精确计算具有指数复杂度。即使是已知最快的算法也需要随着矩阵维度呈指数增长的时间,这使得大矩阵的问题在计算上变得难以处理。最先进的工具利用超级计算机[2,3],但在利用现代高性能计算加速器(如gpu)的公开可用软件方面仍存在显著差距。这种限制使得需要高效和可扩展的方法进行永久计算的研究人员感到痛苦,特别是在实际应用中处理各种矩阵类型(实、复、二值、稀疏、密集)时。解决方法:SUperman是一个完整的开源软件套件,旨在通过多节点和多gpu的混合方法解决永久计算的计算挑战。它支持各种矩阵类型,包括实矩阵、复杂矩阵、二进制矩阵、稀疏矩阵和密集矩阵,并针对每种类型进行专门处理,以最大限度地提高性能。在基准测试中,与运行在44核上的最先进的并行算法相比,该软件在单个GPU上实现了86 × 的加速。此外,它的可扩展架构允许跨多个gpu分配工作负载,从而能够计算高达62 × 62的矩阵的永久值,这在文献中创造了新的记录。超人的模块化设计有助于进一步研究和开发高性能永久计算。计算永久值的复杂性,李勇,理论计算科学8(2)(1979)189-201。0304 - 3975 . DOI: 10.1016 /(79) 90044 - 6.2。P. Lundow, K. Markström,计算物理学报455(2022):110990。DOI: 10.1016 / j.jcp.2022.110990.3。天河2号超级计算机上玻色子采样的基准测试,吴军,刘勇,张斌,金祥,王勇,王辉,杨祥,国家科学基金资助:Rev. 5(5)(2018) 715-720。DOI: 10.1093 / nsr / nwy079。
{"title":"SUperman: Efficient permanent computation on GPUs","authors":"Deniz Elbek ,&nbsp;Fatih Taşyaran ,&nbsp;Bora Uçar ,&nbsp;Kamer Kaya","doi":"10.1016/j.cpc.2026.110027","DOIUrl":"10.1016/j.cpc.2026.110027","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The &lt;em&gt;permanent&lt;/em&gt; is a function, defined for a square matrix, with applications in various domains including quantum computing, statistical physics, complexity theory, combinatorics, and graph theory. Its formula is similar to that of the determinant; however, unlike the determinant, its exact computation is #P-complete, i.e., there is no algorithm to compute the permanent in polynomial time unless P=NP. For an &lt;em&gt;n&lt;/em&gt; × &lt;em&gt;n&lt;/em&gt; matrix, the fastest algorithm has a time complexity of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;O&lt;/mi&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msup&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;−&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Although supercomputers have been employed for permanent computation before, there is no work and, more importantly, no publicly available software that leverages cutting-edge High-Performance Computing accelerators such as GPUs. In this work, we design, develop, and investigate the performance of &lt;span&gt;SUperman&lt;/span&gt;, a complete software suite that can compute matrix permanents on multiple nodes/GPUs on a cluster while handling various matrix types, e.g., real/complex/binary and sparse/dense, etc., with a unique treatment for each type. &lt;span&gt;SUperman&lt;/span&gt; run on a single Nvidia A100 GPU is up to 86 ×  faster than a state-of-the-art parallel algorithm on 44 Intel Xeon cores running at 2.10GHz. Leveraging 192 GPUs, &lt;span&gt;SUperman&lt;/span&gt; computes the permanent of a 62 × 62 matrix in 1.63 days, marking the largest reported permanent computation to date.&lt;/div&gt;&lt;div&gt;PROGRAM SUMMARY&lt;/div&gt;&lt;div&gt;&lt;em&gt;Program Title:&lt;/em&gt; &lt;span&gt;SUperman&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&lt;em&gt;CPC Library link to program files:&lt;/em&gt; &lt;span&gt;&lt;span&gt;https://doi.org/10.17632/5fhxcvfmrw.1&lt;/span&gt;&lt;svg&gt;&lt;path&gt;&lt;/path&gt;&lt;/svg&gt;&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&lt;em&gt;Developer’s repository link:&lt;/em&gt; &lt;span&gt;&lt;span&gt;https://github.com/SU-HPC/superman&lt;/span&gt;&lt;svg&gt;&lt;path&gt;&lt;/path&gt;&lt;/svg&gt;&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&lt;em&gt;Licensing provisions(please choose one):&lt;/em&gt; MIT&lt;/div&gt;&lt;div&gt;&lt;em&gt;Programming language:&lt;/em&gt; &lt;span&gt;C++&lt;/span&gt;, &lt;span&gt;CUDA&lt;/span&gt;&lt;/div&gt;&lt;div&gt;&lt;em&gt;Nature of problem:&lt;/em&gt;&lt;/div&gt;&lt;div&gt;The permanent plays a crucial role in various fields such as quantum computing, statistical physics, combinatorics, and graph theory. Unlike the determinant, computing the permanent is #P-complete [1] and its exact computation has exponential complexity. Even the fastest known algorithms require time that grows exponentially with matrix dimensions, making the problem computationally intractable for large matrices. The state-of-the-art tools leverage supercomputers [2, 3], but there remains a notable gap in publicly available software that exploits modern High-Performance Computing accelerators, such as GPUs. This limitation makes the researchers who require efficient and scalable methods for permanent computation suffer, particularly when dealing with various matrix types (real, complex, binary, sparse, dense) in practical applications.&lt;/div&gt;&lt;div&gt;&lt;em&gt;Solution method:&lt;/em&gt; &lt;span&gt;SUperman&lt;/span&gt; is a complete open-sourc","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110027"},"PeriodicalIF":3.4,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HepLib: a C++ library for high energy physics (version 1.2) HepLib:一个用于高能物理的c++库(版本1.2)
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-15 DOI: 10.1016/j.cpc.2026.110026
Jia-Chen Dai, Feng Feng, Ming-Ming Liu
The version 1.2 of the HepLib (a C++ Library for computations in High Energy Physics) is presented. HepLib builds on top of other well-established libraries or programs, including GINAC, FLINT, FORM, FIRE, etc., its first version has been released in Comput. Phys. Commun. 265, 107,982 (2021). Here we provide another minor upgraded version 1.2, in which the internal depended libraries or programs are updated to their latest versions, several bugs are fixed, many functional performances are improved, and lots of new features are also introduced. We also carry out experimental tests on the program FIRE, employing FLINT to enhance its performance with multivariate polynomials in the integrate-by-parts (IBP) reduction.
介绍了HepLib(一个用于高能物理计算的c++库)的1.2版本。HepLib建立在其他完善的库或程序之上,包括GINAC, FLINT, FORM, FIRE等,它的第一个版本已经在Comput发布。理论物理。common . 265, 107,982(2021)。在这里,我们提供了另一个较小的升级版本1.2,其中内部依赖的库或程序更新到最新版本,修复了一些错误,改进了许多功能性能,并引入了许多新特性。我们还对程序FIRE进行了实验测试,使用FLINT在分部积分(IBP)约简中使用多元多项式来提高其性能。
{"title":"HepLib: a C++ library for high energy physics (version 1.2)","authors":"Jia-Chen Dai,&nbsp;Feng Feng,&nbsp;Ming-Ming Liu","doi":"10.1016/j.cpc.2026.110026","DOIUrl":"10.1016/j.cpc.2026.110026","url":null,"abstract":"<div><div>The version <span>1.2</span> of the <span>HepLib</span> (a <span>C++</span> <span>Lib</span>rary for computations in <span>H</span>igh <span>E</span>nergy <span>P</span>hysics) is presented. <span>HepLib</span> builds on top of other well-established libraries or programs, including <span>GINAC</span>, <span>FLINT</span>, <span>FORM</span>, <span>FIRE</span>, <em>etc.</em>, its first version has been released in Comput. Phys. Commun. <strong>265</strong>, 107,982 (2021). Here we provide another minor upgraded version <span>1.2</span>, in which the internal depended libraries or programs are updated to their latest versions, several bugs are fixed, many functional performances are improved, and lots of new features are also introduced. We also carry out experimental tests on the program <span>FIRE</span>, employing <span>FLINT</span> to enhance its performance with multivariate polynomials in the integrate-by-parts (IBP) reduction.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110026"},"PeriodicalIF":3.4,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical stability of force-gradient integrators and their Hessian-free variants in lattice QCD simulations 点阵QCD模拟中力梯度积分器及其无hessian变体的数值稳定性
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-14 DOI: 10.1016/j.cpc.2026.110034
Kevin Schäfers , Jacob Finkenrath , Michael Günther , Francesco Knechtli
A comprehensive linear stability analysis of force-gradient integrators and their Hessian-free variants is carried out by investigating the harmonic oscillator as a test equation. The analysis reveals that the linear stability of conventional force-gradient integrators and their Hessian-free counterparts coincides. By performing detailed linear stability investigations for the entire family of self-adjoint integrators with up to eleven exponentials per time step, we detect promising integrator variants that are providing a good trade-off between accuracy and numerical stability. Special attention is given to the application of these promising integrator variants within the Hamiltonian Monte Carlo algorithm, particularly in the context of interacting field theories. Simulations for the two-dimensional Schwinger model are conducted to demonstrate that there are no significant differences in the stability domain of a force-gradient integrator and its Hessian-free counterpart. Lattice QCD simulations with two heavy Wilson fermions emphasize that Hessian-free force-gradient integrators with a larger stability threshold allow for a more efficient computational process compared to conventional splitting methods. Furthermore, detailed investigations of the stability threshold are performed by investigating Nf=2 twisted-mass fermions and nested integrators, highlighting the reliability of the linear stability threshold for lattice QCD simulations.
通过研究谐振子作为测试方程,对力梯度积分器及其无hessian变量进行了全面的线性稳定性分析。分析表明,传统力梯度积分器的线性稳定性与无hessin积分器的线性稳定性是一致的。通过对每个时间步长多达11个指数的整个自伴随积分器家族进行详细的线性稳定性研究,我们检测到有希望的积分器变体,这些变体在精度和数值稳定性之间提供了良好的权衡。特别注意这些有前途的积分器变体在哈密顿蒙特卡罗算法中的应用,特别是在相互作用场论的背景下。对二维Schwinger模型进行了仿真,证明了力梯度积分器和无hessin积分器的稳定性域没有显著差异。使用两个重Wilson费米子的晶格QCD模拟强调,与传统的分裂方法相比,具有更大稳定阈值的无hessin力梯度积分器允许更有效的计算过程。此外,通过研究Nf=2扭曲质量费米子和嵌套积分器对稳定性阈值进行了详细的研究,强调了晶格QCD模拟线性稳定性阈值的可靠性。
{"title":"Numerical stability of force-gradient integrators and their Hessian-free variants in lattice QCD simulations","authors":"Kevin Schäfers ,&nbsp;Jacob Finkenrath ,&nbsp;Michael Günther ,&nbsp;Francesco Knechtli","doi":"10.1016/j.cpc.2026.110034","DOIUrl":"10.1016/j.cpc.2026.110034","url":null,"abstract":"<div><div>A comprehensive linear stability analysis of force-gradient integrators and their Hessian-free variants is carried out by investigating the harmonic oscillator as a test equation. The analysis reveals that the linear stability of conventional force-gradient integrators and their Hessian-free counterparts coincides. By performing detailed linear stability investigations for the entire family of self-adjoint integrators with up to eleven exponentials per time step, we detect promising integrator variants that are providing a good trade-off between accuracy and numerical stability. Special attention is given to the application of these promising integrator variants within the Hamiltonian Monte Carlo algorithm, particularly in the context of interacting field theories. Simulations for the two-dimensional Schwinger model are conducted to demonstrate that there are no significant differences in the stability domain of a force-gradient integrator and its Hessian-free counterpart. Lattice QCD simulations with two heavy Wilson fermions emphasize that Hessian-free force-gradient integrators with a larger stability threshold allow for a more efficient computational process compared to conventional splitting methods. Furthermore, detailed investigations of the stability threshold are performed by investigating <span><math><mrow><msub><mi>N</mi><mi>f</mi></msub><mo>=</mo><mn>2</mn></mrow></math></span> twisted-mass fermions and nested integrators, highlighting the reliability of the linear stability threshold for lattice QCD simulations.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110034"},"PeriodicalIF":3.4,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A machine learning based approach to online electron reconstruction at CLAS12 基于机器学习的在线电子重构方法
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-14 DOI: 10.1016/j.cpc.2026.110032
R. Tyson, G. Gavalian
Online reconstruction is key for monitoring purposes and real time analysis in High Energy and Nuclear Physics experiments. A necessary component of reconstruction algorithms is particle identification that combines information left by a particle passing through several detector components to identify the particle’s type. Of particular interest to electro-production Nuclear Physics experiments such as CLAS12 is electron identification which is used to trigger data recording. A machine learning approach was developed for CLAS12 to reconstruct and identify electrons by combining raw signals at the data acquisition level from several detector components. This approach achieves an electron identification purity above 75% whilst retaining an efficiency close to 100%. The machine learning tools are capable of running at high rates exceeding the data acquisition rates and will allow electron reconstruction in real-time. This work enhances online analyses and monitoring and can contribute to improved triggering at CLAS12. This machine learning driven approach will also be crucial for experiments aiming to transition to streaming readout operations where online reconstruction will be a key component of the data taking paradigm.
在线重建是实现高能与核物理实验监测和实时分析的关键。重构算法的一个必要组成部分是粒子识别,它结合粒子通过多个检测器组件后留下的信息来识别粒子的类型。对诸如CLAS12之类的电力生产核物理实验特别感兴趣的是用于触发数据记录的电子识别。为CLAS12开发了一种机器学习方法,通过结合来自多个探测器组件的数据采集级别的原始信号来重建和识别电子。该方法可实现75%以上的电子识别纯度,同时保持接近100%的效率。机器学习工具能够以超过数据采集速率的高速率运行,并将允许实时电子重建。这项工作增强了在线分析和监测,并有助于改善class12的触发。这种机器学习驱动的方法对于旨在过渡到流读出操作的实验也至关重要,其中在线重建将成为数据获取范例的关键组成部分。
{"title":"A machine learning based approach to online electron reconstruction at CLAS12","authors":"R. Tyson,&nbsp;G. Gavalian","doi":"10.1016/j.cpc.2026.110032","DOIUrl":"10.1016/j.cpc.2026.110032","url":null,"abstract":"<div><div>Online reconstruction is key for monitoring purposes and real time analysis in High Energy and Nuclear Physics experiments. A necessary component of reconstruction algorithms is particle identification that combines information left by a particle passing through several detector components to identify the particle’s type. Of particular interest to electro-production Nuclear Physics experiments such as CLAS12 is electron identification which is used to trigger data recording. A machine learning approach was developed for CLAS12 to reconstruct and identify electrons by combining raw signals at the data acquisition level from several detector components. This approach achieves an electron identification purity above 75% whilst retaining an efficiency close to 100%. The machine learning tools are capable of running at high rates exceeding the data acquisition rates and will allow electron reconstruction in real-time. This work enhances online analyses and monitoring and can contribute to improved triggering at CLAS12. This machine learning driven approach will also be crucial for experiments aiming to transition to streaming readout operations where online reconstruction will be a key component of the data taking paradigm.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110032"},"PeriodicalIF":3.4,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Charge exchange process in Geant4 Geant4中的电荷交换过程
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-14 DOI: 10.1016/j.cpc.2026.110033
A.V. Bagulya , V.M. Grichine , V.N. Ivanchenko , M.M. Kirsanov
In the framework of the Geant4 toolkit, a new physics process is introduced for the Monte Carlo simulation of quasi-elastic charge exchange reactions of charged pions and kaons on nuclei. In these reactions, neutral mesons are produced. Such process is needed for the detailed simulation of both signal and background reactions in various experimental setups. One of the motivations of this work is a search for rare invisible decays of neutral mesons that could be possible due to interactions with particles of the hypothetical dark sector. In this article, we describe the implementation of the cross sections of charge exchange processes of pions and kaons, the final state generation algorithm and the ways of turning on the processes in the Geant4 application. The validation versus experimental data is discussed.
在Geant4工具包的框架下,引入了一种新的物理过程,用于蒙特卡罗模拟带电介子和介子在原子核上的准弹性电荷交换反应。在这些反应中,产生中性介子。这样的过程需要在各种实验装置中对信号和背景反应进行详细的模拟。这项工作的动机之一是寻找罕见的不可见的中性介子衰变,这种衰变可能是由于与假设的暗区的粒子相互作用而产生的。在本文中,我们描述了介子和介子电荷交换过程的横截面的实现,最终状态生成算法以及在Geant4应用程序中打开这些过程的方法。讨论了验证与实验数据的对比。
{"title":"Charge exchange process in Geant4","authors":"A.V. Bagulya ,&nbsp;V.M. Grichine ,&nbsp;V.N. Ivanchenko ,&nbsp;M.M. Kirsanov","doi":"10.1016/j.cpc.2026.110033","DOIUrl":"10.1016/j.cpc.2026.110033","url":null,"abstract":"<div><div>In the framework of the Geant4 toolkit, a new physics process is introduced for the Monte Carlo simulation of quasi-elastic charge exchange reactions of charged pions and kaons on nuclei. In these reactions, neutral mesons are produced. Such process is needed for the detailed simulation of both signal and background reactions in various experimental setups. One of the motivations of this work is a search for rare invisible decays of neutral mesons that could be possible due to interactions with particles of the hypothetical dark sector. In this article, we describe the implementation of the cross sections of charge exchange processes of pions and kaons, the final state generation algorithm and the ways of turning on the processes in the Geant4 application. The validation versus experimental data is discussed.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110033"},"PeriodicalIF":3.4,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advanced measurement techniques in quantum Monte Carlo: The permutation matrix representation approach 量子蒙特卡罗的先进测量技术:置换矩阵表示方法
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-13 DOI: 10.1016/j.cpc.2026.110019
Nic Ezzell , Itay Hen
In a typical finite temperature quantum Monte Carlo (QMC) simulation, estimators for simple static observables such as specific heat and magnetization are known. With a great deal of system-specific manual labor, one can sometimes also derive more complicated non-local or even dynamic observable estimators. In contrast, we show that arbitrary static observables can be estimated within the permutation matrix representation (PMR) flavor for any Hamiltonian. We then generalize these results to general imaginary-time correlation functions and non-trivial integrated susceptibilities thereof. We demonstrate the practical versatility of our method by estimating various non-local, random observables for the transverse-field Ising model on a square lattice and a toy random model.
在典型的有限温度量子蒙特卡罗(QMC)模拟中,已知简单静态可观测值(如比热和磁化)的估计量。使用大量特定于系统的手工劳动,有时还可以推导出更复杂的非局部甚至动态的可观察估计器。相反,我们证明了任意静态可观测值可以在任意哈密顿量的排列矩阵表示(PMR)风格内估计。然后我们将这些结果推广到一般的虚时相关函数及其非平凡积分磁化率。我们通过估计方形晶格和玩具随机模型上横场Ising模型的各种非局部随机观测值来证明我们方法的实际通用性。
{"title":"Advanced measurement techniques in quantum Monte Carlo: The permutation matrix representation approach","authors":"Nic Ezzell ,&nbsp;Itay Hen","doi":"10.1016/j.cpc.2026.110019","DOIUrl":"10.1016/j.cpc.2026.110019","url":null,"abstract":"<div><div>In a typical finite temperature quantum Monte Carlo (QMC) simulation, estimators for simple static observables such as specific heat and magnetization are known. With a great deal of system-specific manual labor, one can sometimes also derive more complicated non-local or even dynamic observable estimators. In contrast, we show that arbitrary static observables can be estimated within the permutation matrix representation (PMR) flavor for any Hamiltonian. We then generalize these results to general imaginary-time correlation functions and non-trivial integrated susceptibilities thereof. We demonstrate the practical versatility of our method by estimating various non-local, random observables for the transverse-field Ising model on a square lattice and a toy random model.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110019"},"PeriodicalIF":3.4,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146034995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Linked cell traversal algorithms for three-Body interactions in molecular dynamics 分子动力学中三体相互作用的联胞遍历算法
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-13 DOI: 10.1016/j.cpc.2026.110028
José Alfonso Pinzón Escobar , Markus Mühlhäußer , Hans-Joachim Bungartz , Philipp Neumann
In this work, algorithms for the parallel computation of three-body interactions in molecular dynamics are developed. While traversals for the computation of pair interactions are readily available in the literature, here, such traversals are extended to allow for the computation between molecules stored across three cells. A general framework for the computation of three-body interactions in linked cells is described, and then used to implement the corresponding traversals. In addition, our analysis is combined with the commonly used cutoff conditions, because they influence the total workload of the computation of interactions. The combinations between traversals and truncation conditions are validated using the well-known Lennard-Jones fluid. Validation case studies are taken from the literature and configured into homogeneous and inhomogeneous scenarios. Finally, strong scalability and performance in terms of molecule updates are measured at node-level.
在这项工作中,开发了分子动力学中三体相互作用的并行计算算法。虽然用于计算对相互作用的遍历在文献中很容易获得,但在这里,这种遍历被扩展到允许存储在三个细胞中的分子之间的计算。描述了连接单元中三体相互作用计算的一般框架,然后用于实现相应的遍历。此外,我们的分析还结合了常用的截止条件,因为它们会影响相互作用计算的总工作量。利用著名的Lennard-Jones流体验证了遍历和截断条件之间的组合。验证案例研究取自文献,并配置为同构和非同构场景。最后,在节点级测量了分子更新方面的强大可扩展性和性能。
{"title":"Linked cell traversal algorithms for three-Body interactions in molecular dynamics","authors":"José Alfonso Pinzón Escobar ,&nbsp;Markus Mühlhäußer ,&nbsp;Hans-Joachim Bungartz ,&nbsp;Philipp Neumann","doi":"10.1016/j.cpc.2026.110028","DOIUrl":"10.1016/j.cpc.2026.110028","url":null,"abstract":"<div><div>In this work, algorithms for the parallel computation of three-body interactions in molecular dynamics are developed. While traversals for the computation of pair interactions are readily available in the literature, here, such traversals are extended to allow for the computation between molecules stored across three cells. A general framework for the computation of three-body interactions in linked cells is described, and then used to implement the corresponding traversals. In addition, our analysis is combined with the commonly used cutoff conditions, because they influence the total workload of the computation of interactions. The combinations between traversals and truncation conditions are validated using the well-known Lennard-Jones fluid. Validation case studies are taken from the literature and configured into homogeneous and inhomogeneous scenarios. Finally, strong scalability and performance in terms of molecule updates are measured at node-level.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110028"},"PeriodicalIF":3.4,"publicationDate":"2026-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145974177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multiscale lattice Boltzmann framework based on moment-space information transfer: Application to laser-induced synthesis 基于矩空间信息传递的多尺度晶格玻尔兹曼框架:在激光诱导合成中的应用
IF 3.4 2区 物理与天体物理 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Pub Date : 2026-01-11 DOI: 10.1016/j.cpc.2026.110025
Yongsen He , Rui Wang , Yanming Wang , Siyu Liu
Numerical modelling of solution-based laser-induced synthesis (LIS) remains challenging due to the presence of strongly coupled multiphysics processes operating across broad temporal and spatial scales, from ultrafast nanosecond laser heating to macroscopic material deposition on the order of seconds. To address the computational cost of single-scale simulations, this study proposes a multiscale Lattice Boltzmann Method (LBM) framework based on implementation of information transfer via moment-space projection, which reconstructs distribution functions using a pseudo-inverse operator to effectively filter high-order non-equilibrium noise at grid interfaces. Furthermore, a 1:r2 subcycling strategy is employed to enforce consistent dimensionless transport parameters across subdomains, eliminating the need for explicit temporal interpolation. Validation through Von Neumann analysis and lid-driven cavity benchmarks confirms the method’s unconditional linear stability and second-order spatial accuracy. When applied to the LIS process, the framework successfully couples thermal, hydrodynamic, and chemical fields, achieving a 91.9% reduction in lattice count and an 88.9% reduction in CPU time compared to uniform single-scale LBM, without compromising physical fidelity. This work provides a scalable and efficient approach for simulating additive manufacturing processes characterized by inherent spatiotemporal disparities spanning multiple orders of magnitude.
基于溶液的激光诱导合成(LIS)的数值模拟仍然具有挑战性,因为存在跨时间和空间尺度的强耦合多物理场过程,从超快的纳秒级激光加热到秒级宏观材料沉积。为了解决单尺度模拟的计算成本问题,本研究提出了一种基于矩空间投影实现信息传递的多尺度晶格玻尔兹曼方法(LBM)框架,该框架使用伪逆算子重构分布函数,有效滤除网格界面处的高阶非平衡噪声。此外,采用了1:r2子循环策略来强制跨子域的无量纲传输参数一致,从而消除了显式时间插值的需要。通过冯·诺伊曼分析和盖驱动腔基准验证证实了该方法的无条件线性稳定性和二阶空间精度。当应用于LIS过程时,该框架成功地耦合了热、流体力学和化学领域,与均匀的单尺度LBM相比,晶格数减少了91.9%,CPU时间减少了88.9%,而物理保真度没有受到影响。这项工作提供了一种可扩展和有效的方法来模拟增材制造过程,其特征是跨越多个数量级的固有时空差异。
{"title":"A multiscale lattice Boltzmann framework based on moment-space information transfer: Application to laser-induced synthesis","authors":"Yongsen He ,&nbsp;Rui Wang ,&nbsp;Yanming Wang ,&nbsp;Siyu Liu","doi":"10.1016/j.cpc.2026.110025","DOIUrl":"10.1016/j.cpc.2026.110025","url":null,"abstract":"<div><div>Numerical modelling of solution-based laser-induced synthesis (LIS) remains challenging due to the presence of strongly coupled multiphysics processes operating across broad temporal and spatial scales, from ultrafast nanosecond laser heating to macroscopic material deposition on the order of seconds. To address the computational cost of single-scale simulations, this study proposes a multiscale Lattice Boltzmann Method (LBM) framework based on implementation of information transfer via moment-space projection, which reconstructs distribution functions using a pseudo-inverse operator to effectively filter high-order non-equilibrium noise at grid interfaces. Furthermore, a <span><math><mrow><mn>1</mn><mo>:</mo><msup><mrow><mi>r</mi></mrow><mn>2</mn></msup></mrow></math></span> subcycling strategy is employed to enforce consistent dimensionless transport parameters across subdomains, eliminating the need for explicit temporal interpolation. Validation through Von Neumann analysis and lid-driven cavity benchmarks confirms the method’s unconditional linear stability and second-order spatial accuracy. When applied to the LIS process, the framework successfully couples thermal, hydrodynamic, and chemical fields, achieving a 91.9% reduction in lattice count and an 88.9% reduction in CPU time compared to uniform single-scale LBM, without compromising physical fidelity. This work provides a scalable and efficient approach for simulating additive manufacturing processes characterized by inherent spatiotemporal disparities spanning multiple orders of magnitude.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"321 ","pages":"Article 110025"},"PeriodicalIF":3.4,"publicationDate":"2026-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145974175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer Physics Communications
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1