首页 > 最新文献

Irish Conference on Artificial Intelligence and Cognitive Science最新文献

英文 中文
Privacy-Enhanced ZKP-Inspired Framework for Balanced Federated Learning 隐私增强的zkp启发框架,用于平衡联邦学习
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_20
S. Marzo, Royston Pinto, Lucy McKenna, R. Brennan
{"title":"Privacy-Enhanced ZKP-Inspired Framework for Balanced Federated Learning","authors":"S. Marzo, Royston Pinto, Lucy McKenna, R. Brennan","doi":"10.1007/978-3-031-26438-2_20","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_20","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"366 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134018030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Multi-Graph Convolutional Neural Network for Breast Cancer Multi-task Classification 多图卷积神经网络在乳腺癌多任务分类中的应用
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_4
Mohamed O. Ibrahim, Shagufta Henna, Garry Cullen
{"title":"Multi-Graph Convolutional Neural Network for Breast Cancer Multi-task Classification","authors":"Mohamed O. Ibrahim, Shagufta Henna, Garry Cullen","doi":"10.1007/978-3-031-26438-2_4","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_4","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"38 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127803248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
AI and ML in School Level Computing Education: Who, What and Where? 学校级计算机教育中的AI和ML:谁,什么,在哪里?
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_16
Joyce Mahon, Brett A. Becker, Brian Mac Namee
{"title":"AI and ML in School Level Computing Education: Who, What and Where?","authors":"Joyce Mahon, Brett A. Becker, Brian Mac Namee","doi":"10.1007/978-3-031-26438-2_16","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_16","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114901178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
How Short is a Piece of String? : The Impact of Text Length and Text Augmentation on Short-text Classification 一根绳子有多短?:文本长度和文本增强对短文本分类的影响
Pub Date : 1900-01-01 DOI: 10.21427/D7151M
Austin Mccartney, Svetlana Hensman, L. Longo
Recent increases in the use and availability of short messages have created opportunities to harvest vast amounts of information through machine-based classification. However, traditional classification methods have failed to yield accuracies comparable to classification accuracies on longer texts. Several approaches have previously been employed to extend traditional methods to overcome this problem, including the enhancement of the original texts through the construction of associations with external data supplementation sources. Existing literature does not precisely describe the impact of text length on classification performance. This work quantitatively examines the changes in accuracy of a small selection of classifiers using a variety of enhancement methods, as text length progressively decreases. Findings, based on ANOVA testing at a 95% confidence interval, suggest that the performance of classifiers using simple enhancements decreases with decreasing text length, but that the use of more sophisticated enhancements risks over-supplementation of the text and consequent concept drift and classification performance decrease as text length increases.
最近短信使用和可用性的增加为通过基于机器的分类收集大量信息创造了机会。然而,传统的分类方法未能产生与较长文本的分类精度相当的准确性。以前已经采用了几种方法来扩展传统方法来克服这个问题,包括通过构建与外部数据补充来源的关联来增强原始文本。现有文献并没有精确描述文本长度对分类性能的影响。这项工作定量地检查了使用各种增强方法的一小部分分类器的准确性变化,随着文本长度逐渐减少。基于95%置信区间方差分析的结果表明,使用简单增强的分类器的性能随着文本长度的减少而下降,但使用更复杂的增强可能会导致文本的过度补充,从而导致概念漂移,分类性能随着文本长度的增加而下降。
{"title":"How Short is a Piece of String? : The Impact of Text Length and Text Augmentation on Short-text Classification","authors":"Austin Mccartney, Svetlana Hensman, L. Longo","doi":"10.21427/D7151M","DOIUrl":"https://doi.org/10.21427/D7151M","url":null,"abstract":"Recent increases in the use and availability of short messages have created opportunities to harvest vast amounts of information through machine-based classification. However, traditional classification methods have failed to yield accuracies comparable to classification accuracies on longer texts. Several approaches have previously been employed to extend traditional methods to overcome this problem, including the enhancement of the original texts through the construction of associations with external data supplementation sources. Existing literature does not precisely describe the impact of text length on classification performance. This work quantitatively examines the changes in accuracy of a small selection of classifiers using a variety of enhancement methods, as text length progressively decreases. Findings, based on ANOVA testing at a 95% confidence interval, suggest that the performance of classifiers using simple enhancements decreases with decreasing text length, but that the use of more sophisticated enhancements risks over-supplementation of the text and consequent concept drift and classification performance decrease as text length increases.","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121449769","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
A Comparison on the Classification of Short-text Documents Using Latent Dirichlet Allocation and Formal Concept Analysis 基于潜狄利克雷分配和形式概念分析的短文本文档分类比较
Pub Date : 1900-01-01 DOI: 10.21427/D7XR39
Noel Rogers, L. Longo
With the increasing amounts of textual data being collected online, automated text classification techniques are becoming increasingly important. However, a lot of this data is in the form of short-text with just a handful of terms per document (e.g. Text messages, tweets or Facebook posts). This data is generally too sparse and noisy to obtain satisfactory classification. Two techniques which aim to alleviate this problem are Latent Dirichlet Allocation (LDA) and Formal Concept Analysis (FCA). Both techniques have been shown to improve the performance of short-text classification by reducing the sparsity of the input data. The relative performance of classifiers that have been enhanced using each technique has not been directly compared so, to address this issue, this work presents an experiment to compare them, using supervised models. It has shown that FCA leads to a much higher degree of correlation among terms than LDA and initially gives lower classification accuracy. However, once a subset of features is selected for training, the FCA models can outperform those trained on LDA expanded data.
随着在线收集的文本数据量的增加,自动文本分类技术变得越来越重要。然而,很多数据都是短文本形式的,每个文档只有少数几个术语(例如文本消息、tweet或Facebook帖子)。这些数据通常过于稀疏和嘈杂,无法获得令人满意的分类。潜在狄利克雷分配(LDA)和形式概念分析(FCA)是缓解这一问题的两种技术。这两种技术都通过降低输入数据的稀疏性来提高短文本分类的性能。使用每种技术增强的分类器的相对性能没有被直接比较,因此,为了解决这个问题,本工作提出了一个实验来比较它们,使用监督模型。结果表明,与LDA相比,FCA导致术语之间的相关程度要高得多,并且最初给出的分类精度较低。然而,一旦选择了特征子集进行训练,FCA模型的性能就会优于那些在LDA扩展数据上训练的模型。
{"title":"A Comparison on the Classification of Short-text Documents Using Latent Dirichlet Allocation and Formal Concept Analysis","authors":"Noel Rogers, L. Longo","doi":"10.21427/D7XR39","DOIUrl":"https://doi.org/10.21427/D7XR39","url":null,"abstract":"With the increasing amounts of textual data being collected online, automated text classification techniques are becoming increasingly important. However, a lot of this data is in the form of short-text with just a handful of terms per document (e.g. Text messages, tweets or Facebook posts). This data is generally too sparse and noisy to obtain satisfactory classification. Two techniques which aim to alleviate this problem are Latent Dirichlet Allocation (LDA) and Formal Concept Analysis (FCA). Both techniques have been shown to improve the performance of short-text classification by reducing the sparsity of the input data. The relative performance of classifiers that have been enhanced using each technique has not been directly compared so, to address this issue, this work presents an experiment to compare them, using supervised models. It has shown that FCA leads to a much higher degree of correlation among terms than LDA and initially gives lower classification accuracy. However, once a subset of features is selected for training, the FCA models can outperform those trained on LDA expanded data.","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"21 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115603347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Safe Lane-Changing in CAVs Using External Safety Supervisors: A Review 使用外部安全监控器的自动驾驶汽车安全变道:综述
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_41
Lalu Prasad Lenka, Mélanie Bouroche
{"title":"Safe Lane-Changing in CAVs Using External Safety Supervisors: A Review","authors":"Lalu Prasad Lenka, Mélanie Bouroche","doi":"10.1007/978-3-031-26438-2_41","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_41","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115346517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Abstractive vs. Extractive Summarisation Techniques for Sports News 探索体育新闻的抽象与抽取摘要技术
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_29
AhmedSalah Jouda
{"title":"Exploring Abstractive vs. Extractive Summarisation Techniques for Sports News","authors":"AhmedSalah Jouda","doi":"10.1007/978-3-031-26438-2_29","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_29","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"47 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130008232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Run-Time Norms Synthesis in Dynamic Environments with Changing Objectives 动态环境下目标变化的运行规范综合
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_36
Maha Riad, Saeedeh Ghanadbashi, F. Golpayegani
{"title":"Run-Time Norms Synthesis in Dynamic Environments with Changing Objectives","authors":"Maha Riad, Saeedeh Ghanadbashi, F. Golpayegani","doi":"10.1007/978-3-031-26438-2_36","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_36","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126966968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CouRGe: Counterfactual Reviews Generator for Sentiment Analysis 课程:情感分析的反事实评论生成器
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_24
Diego Carraro, Kenneth N. Brown
{"title":"CouRGe: Counterfactual Reviews Generator for Sentiment Analysis","authors":"Diego Carraro, Kenneth N. Brown","doi":"10.1007/978-3-031-26438-2_24","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_24","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"15 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124364955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Intelligent Empowering Agent (IEA) to Provide Easily Understood and Trusted Health Information Appropriate to the User Needs 智能授权代理(IEA)提供易于理解和可信的健康信息,适合用户的需要
Pub Date : 1900-01-01 DOI: 10.1007/978-3-031-26438-2_14
M. Alfano, J. Kellett, B. Lenzitti, M. Helfert
{"title":"An Intelligent Empowering Agent (IEA) to Provide Easily Understood and Trusted Health Information Appropriate to the User Needs","authors":"M. Alfano, J. Kellett, B. Lenzitti, M. Helfert","doi":"10.1007/978-3-031-26438-2_14","DOIUrl":"https://doi.org/10.1007/978-3-031-26438-2_14","url":null,"abstract":"","PeriodicalId":286718,"journal":{"name":"Irish Conference on Artificial Intelligence and Cognitive Science","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125193075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Irish Conference on Artificial Intelligence and Cognitive Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1