Pub Date : 2020-11-01DOI: 10.1109/3DV50981.2020.00024
Nikolaus Demmel, Maolin Gao, Emanuel Laude, Tao Wu, D. Cremers
In this paper we demonstrate that global photometric bundle adjustment (PBA) over all past keyframes can significantly improve the global accuracy of a monocular SLAM map compared to geometric techniques such as pose-graph optimization or traditional (geometric) bundle adjustment. However, PBA is computationally expensive in runtime, and memory usage can be prohibitively high. In order to address this scalability issue, we formulate PBA as an approximate consensus program. Due to its decomposable structure, the problem can be solved with block coordinate descent in parallel across multiple independent workers, each having lower requirements on memory and computational resources. For improved accuracy and convergence, we propose a novel gauge aware consensus update. Our experiments on real-world data show an average error reduction of 62% compared to odometry and 33% compared to intermediate pose-graph optimization, and that compared to the central optimization on a single machine, our distributed PBA achieves competitive pose-accuracy and cost.
{"title":"Distributed Photometric Bundle Adjustment","authors":"Nikolaus Demmel, Maolin Gao, Emanuel Laude, Tao Wu, D. Cremers","doi":"10.1109/3DV50981.2020.00024","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00024","url":null,"abstract":"In this paper we demonstrate that global photometric bundle adjustment (PBA) over all past keyframes can significantly improve the global accuracy of a monocular SLAM map compared to geometric techniques such as pose-graph optimization or traditional (geometric) bundle adjustment. However, PBA is computationally expensive in runtime, and memory usage can be prohibitively high. In order to address this scalability issue, we formulate PBA as an approximate consensus program. Due to its decomposable structure, the problem can be solved with block coordinate descent in parallel across multiple independent workers, each having lower requirements on memory and computational resources. For improved accuracy and convergence, we propose a novel gauge aware consensus update. Our experiments on real-world data show an average error reduction of 62% compared to odometry and 33% compared to intermediate pose-graph optimization, and that compared to the central optimization on a single machine, our distributed PBA achieves competitive pose-accuracy and cost.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125577402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1109/3DV50981.2020.00098
Sai Sagar Jinka, R. Chacko, Avinash Sharma, P J Narayanan
We introduce PeeledHuman - a novel shape representation of the human body that is robust to self-occlusions. PeeledHuman encodes the human body as a set of Peeled Depth and RGB maps in 2D, obtained by performing raytracing on the 3D body model and extending each ray beyond its first intersection. This formulation allows us to handle self-occlusions efficiently compared to other representations. Given a monocular RGB image, we learn these Peeled maps in an end-to-end generative adversarial fashion using our novel framework - PeelGAN. We train PeelGAN using a 3D Chamfer loss and other 2D losses to generate multiple depth values per-pixel and a corresponding RGB field per-vertex in a dual-branch setup. In our simple non-parametric solution, the generated Peeled Depth maps are back-projected to 3D space to obtain a complete textured 3D shape. The corresponding RGB maps provide vertex-level texture details. We compare our method with current parametric and non-parametric methods in 3D reconstruction and find that we achieve state-of-theart-results. We demonstrate the effectiveness of our representation on publicly available BUFF and MonoPerfCap datasets as well as loose clothing data collected by our calibrated multi-Kinect setup.
{"title":"PeeledHuman: Robust Shape Representation for Textured 3D Human Body Reconstruction","authors":"Sai Sagar Jinka, R. Chacko, Avinash Sharma, P J Narayanan","doi":"10.1109/3DV50981.2020.00098","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00098","url":null,"abstract":"We introduce PeeledHuman - a novel shape representation of the human body that is robust to self-occlusions. PeeledHuman encodes the human body as a set of Peeled Depth and RGB maps in 2D, obtained by performing raytracing on the 3D body model and extending each ray beyond its first intersection. This formulation allows us to handle self-occlusions efficiently compared to other representations. Given a monocular RGB image, we learn these Peeled maps in an end-to-end generative adversarial fashion using our novel framework - PeelGAN. We train PeelGAN using a 3D Chamfer loss and other 2D losses to generate multiple depth values per-pixel and a corresponding RGB field per-vertex in a dual-branch setup. In our simple non-parametric solution, the generated Peeled Depth maps are back-projected to 3D space to obtain a complete textured 3D shape. The corresponding RGB maps provide vertex-level texture details. We compare our method with current parametric and non-parametric methods in 3D reconstruction and find that we achieve state-of-theart-results. We demonstrate the effectiveness of our representation on publicly available BUFF and MonoPerfCap datasets as well as loose clothing data collected by our calibrated multi-Kinect setup.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129341339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-11-01DOI: 10.1109/3dv50981.2020.00005
{"title":"Message from the 3DV 2020 General Chair","authors":"","doi":"10.1109/3dv50981.2020.00005","DOIUrl":"https://doi.org/10.1109/3dv50981.2020.00005","url":null,"abstract":"","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129425305","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-31DOI: 10.1109/3DV50981.2020.00036
J. K. Pontes, James Hays, S. Lucey
Scene flow is the three-dimensional (3D) motion field of a scene. It provides information about the spatial arrangement and rate of change of objects in dynamic environments. Current learning-based approaches seek to estimate the scene flow directly from point clouds and have achieved state-of-the-art performance. However, supervised learning methods are inherently domain specific and require a large amount of labeled data. Annotation of scene flow on real-world point clouds is expensive and challenging, and the lack of such datasets has recently sparked interest in self-supervised learning methods. How to accurately and robustly learn scene flow representations without labeled real-world data is still an open problem. Here we present a simple and interpretable objective function to recover the scene flow from point clouds. We use the graph Laplacian of a point cloud to regularize the scene flow to be “asrigid-as-possible”. Our proposed objective function can be used with or without learning—as a self-supervisory signal to learn scene flow representations, or as a non-learning-based method in which the scene flow is optimized during runtime. Our approach outperforms related works in many datasets. We also show the immediate applications of our proposed method for two applications: motion segmentation and point cloud densification.
{"title":"Scene Flow from Point Clouds with or without Learning","authors":"J. K. Pontes, James Hays, S. Lucey","doi":"10.1109/3DV50981.2020.00036","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00036","url":null,"abstract":"Scene flow is the three-dimensional (3D) motion field of a scene. It provides information about the spatial arrangement and rate of change of objects in dynamic environments. Current learning-based approaches seek to estimate the scene flow directly from point clouds and have achieved state-of-the-art performance. However, supervised learning methods are inherently domain specific and require a large amount of labeled data. Annotation of scene flow on real-world point clouds is expensive and challenging, and the lack of such datasets has recently sparked interest in self-supervised learning methods. How to accurately and robustly learn scene flow representations without labeled real-world data is still an open problem. Here we present a simple and interpretable objective function to recover the scene flow from point clouds. We use the graph Laplacian of a point cloud to regularize the scene flow to be “asrigid-as-possible”. Our proposed objective function can be used with or without learning—as a self-supervisory signal to learn scene flow representations, or as a non-learning-based method in which the scene flow is optimized during runtime. Our approach outperforms related works in many datasets. We also show the immediate applications of our proposed method for two applications: motion segmentation and point cloud densification.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"05 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121610212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-30DOI: 10.1109/3DV50981.2020.00070
T. Zodage, Rahul Chakwate, Vinit Sarode, Rangaprasad Arun Srivatsan, H. Choset
Point-cloud registration (PCR) is an important task in various applications such as robotic manipulation, augmented and virtual reality, SLAM, etc. PCR is an optimization problem involving minimization over two different types of interdependent variables: transformation parameters and point-to-point correspondences. Recent developments in deep-learning have produced computationally fast approaches for PCR. The loss functions that are optimized in these networks are based on the error in the transformation parameters. We hypothesize that these methods would perform significantly better if they calculated their loss function using correspondence error instead of only using error in transformation parameters. We define correspondence error as a metric based on incorrectly matched point pairs. We provide a fundamental explanation for why this is the case and test our hypothesis by modifying existing methods to use correspondence-based loss instead of transformation-based loss. These experiments show that the modified networks converge faster and register more accurately even at larger misalignment when compared to the original networks.
{"title":"Correspondence Matrices are Underrated","authors":"T. Zodage, Rahul Chakwate, Vinit Sarode, Rangaprasad Arun Srivatsan, H. Choset","doi":"10.1109/3DV50981.2020.00070","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00070","url":null,"abstract":"Point-cloud registration (PCR) is an important task in various applications such as robotic manipulation, augmented and virtual reality, SLAM, etc. PCR is an optimization problem involving minimization over two different types of interdependent variables: transformation parameters and point-to-point correspondences. Recent developments in deep-learning have produced computationally fast approaches for PCR. The loss functions that are optimized in these networks are based on the error in the transformation parameters. We hypothesize that these methods would perform significantly better if they calculated their loss function using correspondence error instead of only using error in transformation parameters. We define correspondence error as a metric based on incorrectly matched point pairs. We provide a fundamental explanation for why this is the case and test our hypothesis by modifying existing methods to use correspondence-based loss instead of transformation-based loss. These experiments show that the modified networks converge faster and register more accurately even at larger misalignment when compared to the original networks.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124307703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-26DOI: 10.1109/3DV50981.2020.00090
Shun-cheng Wu, Keisuke Tateno, N. Navab, Federico Tombari
Real-time scene reconstruction from depth data inevitably suffers from occlusion, thus leading to incomplete 3D models. Partial reconstructions, in turn, limit the performance of algorithms that leverage them for applications in the context of, e.g., augmented reality, robotic navigation, and 3D mapping. Most methods address this issue by predicting the missing geometry as an offline optimization, thus being incompatible with real-time applications. We propose a framework that ameliorates this issue by performing scene reconstruction and semantic scene completion jointly in an incremental and real-time manner, based on an input sequence of depth maps. Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model. We evaluate the proposed approach quantitatively and qualitatively, demonstrating that our method can obtain accurate 3D semantic scene completion in real-time.
{"title":"SCFusion: Real-time Incremental Scene Reconstruction with Semantic Completion","authors":"Shun-cheng Wu, Keisuke Tateno, N. Navab, Federico Tombari","doi":"10.1109/3DV50981.2020.00090","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00090","url":null,"abstract":"Real-time scene reconstruction from depth data inevitably suffers from occlusion, thus leading to incomplete 3D models. Partial reconstructions, in turn, limit the performance of algorithms that leverage them for applications in the context of, e.g., augmented reality, robotic navigation, and 3D mapping. Most methods address this issue by predicting the missing geometry as an offline optimization, thus being incompatible with real-time applications. We propose a framework that ameliorates this issue by performing scene reconstruction and semantic scene completion jointly in an incremental and real-time manner, based on an input sequence of depth maps. Our framework relies on a novel neural architecture designed to process occupancy maps and leverages voxel states to accurately and efficiently fuse semantic completion with the 3D global model. We evaluate the proposed approach quantitatively and qualitatively, demonstrating that our method can obtain accurate 3D semantic scene completion in real-time.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126572212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-23DOI: 10.1109/3DV50981.2020.00067
Mehmet Aygün, Zorah Lähner, D. Cremers
In this work, we propose an unsupervised method for learning dense correspondences between shapes using a recent deep functional map framework. Instead of depending on ground-truth correspondences or the computationally expensive geodesic distances, we use heat kernels. These can be computed quickly during training as the supervisor signal. Moreover, we propose a curriculum learning strategy using different heat diffusion times which provide different levels of difficulty during optimization without any sampling mechanism or hard example mining. We present the results of our method on different benchmarks which have various challenges like partiality, topological noise and different connectivity.
{"title":"Unsupervised Dense Shape Correspondence using Heat Kernels","authors":"Mehmet Aygün, Zorah Lähner, D. Cremers","doi":"10.1109/3DV50981.2020.00067","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00067","url":null,"abstract":"In this work, we propose an unsupervised method for learning dense correspondences between shapes using a recent deep functional map framework. Instead of depending on ground-truth correspondences or the computationally expensive geodesic distances, we use heat kernels. These can be computed quickly during training as the supervisor signal. Moreover, we propose a curriculum learning strategy using different heat diffusion times which provide different levels of difficulty during optimization without any sampling mechanism or hard example mining. We present the results of our method on different benchmarks which have various challenges like partiality, topological noise and different connectivity.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130940935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-23DOI: 10.1109/3DV50981.2020.00100
Nikolas Klug, Moritz Einfalt, Stephan Brehm, R. Lienhart
The current state-of-the-art in monocular 3D human pose estimation is heavily influenced by weakly supervised methods. These allow 2D labels to be used to learn effective 3D human pose recovery either directly from images or via 2D-to-3D pose uplifting. In this paper we present a detailed analysis of the most commonly used simplified projection models, which relate the estimated 3D pose representation to 2D labels: normalized perspective and weak perspective projections. Specifically, we derive theoretical lower bound errors for those projection models under the commonly used mean per-joint position error (MPJPE). Additionally, we show how the normalized perspective projection can be replaced to avoid this guaranteed minimal error. We evaluate the derived lower bounds on the most commonly used 3D human pose estimation benchmark datasets. Our results show that both projection models lead to an inherent minimal error between 19.3mm and 54.7mm, even after alignment in position and scale. This is a considerable share when comparing with recent state-of-the-art results. Our paper thus establishes a theoretical baseline that shows the importance of suitable projection models in weakly supervised 3D human pose estimation.
{"title":"Error Bounds of Projection Models in Weakly Supervised 3D Human Pose Estimation","authors":"Nikolas Klug, Moritz Einfalt, Stephan Brehm, R. Lienhart","doi":"10.1109/3DV50981.2020.00100","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00100","url":null,"abstract":"The current state-of-the-art in monocular 3D human pose estimation is heavily influenced by weakly supervised methods. These allow 2D labels to be used to learn effective 3D human pose recovery either directly from images or via 2D-to-3D pose uplifting. In this paper we present a detailed analysis of the most commonly used simplified projection models, which relate the estimated 3D pose representation to 2D labels: normalized perspective and weak perspective projections. Specifically, we derive theoretical lower bound errors for those projection models under the commonly used mean per-joint position error (MPJPE). Additionally, we show how the normalized perspective projection can be replaced to avoid this guaranteed minimal error. We evaluate the derived lower bounds on the most commonly used 3D human pose estimation benchmark datasets. Our results show that both projection models lead to an inherent minimal error between 19.3mm and 54.7mm, even after alignment in position and scale. This is a considerable share when comparing with recent state-of-the-art results. Our paper thus establishes a theoretical baseline that shows the importance of suitable projection models in weakly supervised 3D human pose estimation.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125338548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-23DOI: 10.1109/3DV50981.2020.00049
Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, T. Pock, F. Fraundorfer
In this work, we propose BP-MVSNet, a convolutional neural network (CNN)-based Multi-View-Stereo (MVS) method that uses a differentiable Conditional Random Field (CRF) layer for regularization. To this end, we propose to extend the BP layer [16] and add what is necessary to successfully use it in the MVS setting. We therefore show how we can calculate a normalization based on the expected 3D error, which we can then use to normalize the label jumps in the CRF. This is required to make the BP layer invariant to different scales in the MVS setting. In order to also enable fractional label jumps, we propose a differentiable interpolation step, which we embed into the computation of the pairwise term. These extensions allow us to integrate the BP layer into a multi-scale MVS network, where we continuously improve a rough initial estimate until we get high quality depth maps as a result. We evaluate the proposed BP-MVSNet in an ablation study and conduct extensive experiments on the DTU, Tanks and Temples and ETH3D data sets. The experiments show that we can significantly outperform the baseline and achieve state-of-the-art results.
{"title":"BP-MVSNet: Belief-Propagation-Layers for Multi-View-Stereo","authors":"Christian Sormann, Patrick Knöbelreiter, Andreas Kuhn, Mattia Rossi, T. Pock, F. Fraundorfer","doi":"10.1109/3DV50981.2020.00049","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00049","url":null,"abstract":"In this work, we propose BP-MVSNet, a convolutional neural network (CNN)-based Multi-View-Stereo (MVS) method that uses a differentiable Conditional Random Field (CRF) layer for regularization. To this end, we propose to extend the BP layer [16] and add what is necessary to successfully use it in the MVS setting. We therefore show how we can calculate a normalization based on the expected 3D error, which we can then use to normalize the label jumps in the CRF. This is required to make the BP layer invariant to different scales in the MVS setting. In order to also enable fractional label jumps, we propose a differentiable interpolation step, which we embed into the computation of the pairwise term. These extensions allow us to integrate the BP layer into a multi-scale MVS network, where we continuously improve a rough initial estimate until we get high quality depth maps as a result. We evaluate the proposed BP-MVSNet in an ablation study and conduct extensive experiments on the DTU, Tanks and Temples and ETH3D data sets. The experiments show that we can significantly outperform the baseline and achieve state-of-the-art results.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127352557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-22DOI: 10.1109/3DV50981.2020.00102
Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece, R. Ziegler, Otmar Hilliges
In this paper we propose a convolutional autoencoder to address the problem of motion infilling for 3D human motion data. Given a start and end sequence, motion infilling aims to complete the missing gap in between, such that the filled in poses plausibly forecast the start sequence and naturally transition into the end sequence. To this end, we propose a single, end-to-end trainable convolutional autoencoder. We show that a single model can be used to create natural transitions between different types of activities. Furthermore, our method is not only able to fill in entire missing frames, but it can also be used to complete gaps where partial poses are available (e.g. from end effectors), or to clean up other forms of noise (e.g. Gaussian). Also, the model can fill in an arbitrary number of gaps that potentially vary in length. In addition, no further post-processing on the model’s outputs is necessary such as smoothing or closing discontinuities at the end of the gap. At the heart of our approach lies the idea to cast motion infilling as an inpainting problem and to train a convolutional de-noising autoencoder on image-like representations of motion sequences. At training time, blocks of columns are removed from such images and we ask the model to fill in the gaps. We demonstrate the versatility of the approach via a number of complex motion sequences and report on thorough evaluations performed to better understand the capabilities and limitations of the proposed approach.
{"title":"Convolutional Autoencoders for Human Motion Infilling","authors":"Manuel Kaufmann, Emre Aksan, Jie Song, Fabrizio Pece, R. Ziegler, Otmar Hilliges","doi":"10.1109/3DV50981.2020.00102","DOIUrl":"https://doi.org/10.1109/3DV50981.2020.00102","url":null,"abstract":"In this paper we propose a convolutional autoencoder to address the problem of motion infilling for 3D human motion data. Given a start and end sequence, motion infilling aims to complete the missing gap in between, such that the filled in poses plausibly forecast the start sequence and naturally transition into the end sequence. To this end, we propose a single, end-to-end trainable convolutional autoencoder. We show that a single model can be used to create natural transitions between different types of activities. Furthermore, our method is not only able to fill in entire missing frames, but it can also be used to complete gaps where partial poses are available (e.g. from end effectors), or to clean up other forms of noise (e.g. Gaussian). Also, the model can fill in an arbitrary number of gaps that potentially vary in length. In addition, no further post-processing on the model’s outputs is necessary such as smoothing or closing discontinuities at the end of the gap. At the heart of our approach lies the idea to cast motion infilling as an inpainting problem and to train a convolutional de-noising autoencoder on image-like representations of motion sequences. At training time, blocks of columns are removed from such images and we ask the model to fill in the gaps. We demonstrate the versatility of the approach via a number of complex motion sequences and report on thorough evaluations performed to better understand the capabilities and limitations of the proposed approach.","PeriodicalId":293399,"journal":{"name":"2020 International Conference on 3D Vision (3DV)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2020-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116210154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}