首页 > 最新文献

2018 IEEE Real-Time Systems Symposium (RTSS)最新文献

英文 中文
BUNDLEP: Prioritizing Conflict Free Regions in Multi-threaded Programs to Improve Cache Reuse BUNDLEP:在多线程程序中对无冲突区域进行优先级排序,以提高缓存重用
Pub Date : 2018-05-30 DOI: 10.1109/RTSS.2018.00048
Corey Tessler, N. Fisher
In "BUNDLE: Real-Time Multi-Threaded Scheduling to Reduce Cache Contention", Tessler and Fisher propose a scheduling mechanism and combined worst-case execution time calculation method that treats the instruction cache as a beneficial resource shared between threads. Object analysis produces a worst-case execution time bound and separates code segments into regions. Threads are dynamically placed in bundles associated with regions at run time by the BUNDLE scheduling algorithm where they benefit from shared cache values. In the evaluation of the previous work, tasks were created with a predetermined worst-case execution time path through the control flow graph. Apriori knowledge of the worst-case path is an impractical restriction on any analysis. At the time, the only other solution available was an all-paths search of the graph, which is an equally impractical approach due to its complexity. The primary focus of this work is to build upon BUNDLE, expanding its applicability beyond a proof of concept. We present a complete worst-case execution time calculation method that includes thread level context switch costs, operating on real programs, with representative architecture parameters, and compare our results to those produced by Heptane's state of the art method. To these ends, we propose a modification to the BUNDLE scheduling algorithm called BUNDLEP. Bundles are assigned priorities that enforce an ordered flow of threads through the control flow graph – avoiding the need for multiple all-paths searches through the graph. In many cases, our evaluation shows a run-time and analytical benefit for BUNLDEP compared to serialized thread execution and state of the art WCET analysis.
Tessler和Fisher在“BUNDLE: Real-Time Multi-Threaded Scheduling to Reduce Cache Contention”一文中提出了一种将指令缓存作为线程间共享的有益资源的调度机制和联合最坏情况执行时间计算方法。对象分析产生最坏情况下的执行时间限制,并将代码段划分为区域。在运行时,通过BUNDLE调度算法将线程动态地放置在与区域相关联的BUNDLE中,从而使它们受益于共享缓存值。在评估之前的工作时,通过控制流图创建具有预定最坏情况执行时间路径的任务。最坏情况路径的先验知识对任何分析都是不切实际的限制。当时,唯一可用的其他解决方案是对图进行全路径搜索,由于其复杂性,这同样是一种不切实际的方法。这项工作的主要焦点是建立在BUNDLE的基础上,扩展其适用性,而不仅仅是概念验证。我们提出了一个完整的最坏情况执行时间计算方法,其中包括线程级上下文切换成本、在真实程序上操作、具有代表性的体系结构参数,并将我们的结果与Heptane最先进的方法产生的结果进行比较。为此,我们提出了对BUNDLE调度算法的修改,称为BUNDLEP。bundle被分配了优先级,通过控制流图强制执行有序的线程流——避免了在图中进行多次全路径搜索的需要。在许多情况下,我们的评估显示,与序列化线程执行和最先进的WCET分析相比,BUNLDEP在运行时和分析方面具有优势。
{"title":"BUNDLEP: Prioritizing Conflict Free Regions in Multi-threaded Programs to Improve Cache Reuse","authors":"Corey Tessler, N. Fisher","doi":"10.1109/RTSS.2018.00048","DOIUrl":"https://doi.org/10.1109/RTSS.2018.00048","url":null,"abstract":"In \"BUNDLE: Real-Time Multi-Threaded Scheduling to Reduce Cache Contention\", Tessler and Fisher propose a scheduling mechanism and combined worst-case execution time calculation method that treats the instruction cache as a beneficial resource shared between threads. Object analysis produces a worst-case execution time bound and separates code segments into regions. Threads are dynamically placed in bundles associated with regions at run time by the BUNDLE scheduling algorithm where they benefit from shared cache values. In the evaluation of the previous work, tasks were created with a predetermined worst-case execution time path through the control flow graph. Apriori knowledge of the worst-case path is an impractical restriction on any analysis. At the time, the only other solution available was an all-paths search of the graph, which is an equally impractical approach due to its complexity. The primary focus of this work is to build upon BUNDLE, expanding its applicability beyond a proof of concept. We present a complete worst-case execution time calculation method that includes thread level context switch costs, operating on real programs, with representative architecture parameters, and compare our results to those produced by Heptane's state of the art method. To these ends, we propose a modification to the BUNDLE scheduling algorithm called BUNDLEP. Bundles are assigned priorities that enforce an ordered flow of threads through the control flow graph – avoiding the need for multiple all-paths searches through the graph. In many cases, our evaluation shows a run-time and analytical benefit for BUNLDEP compared to serialized thread execution and state of the art WCET analysis.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130993994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Reservation-Based Federated Scheduling for Parallel Real-Time Tasks 基于预留的并行实时任务联邦调度
Pub Date : 2017-12-13 DOI: 10.1109/RTSS.2018.00061
Niklas Ueter, G. V. D. Brüggen, Jian-Jia Chen, Jing Li, Kunal Agrawal
Multicore systems are increasingly utilized in real-time systems in order to address the high computational demands. To fully exploit the advantages of multicore processing, possible intra-task parallelism modeled as a directed acyclic graph (DAG) must be utilized efficiently. This paper considers the scheduling problem for parallel real-time tasks with constrained and arbitrary deadlines. In contrast to prior work in this area, it generalizes federated scheduling and proposes a novel reservation-based approach. Namely, we propose a reservation-based federated scheduling strategy that reduces the problem of scheduling arbitrary-deadline DAG task sets to the problem of scheduling arbitrary-deadline sequential task sets by allocating reservation servers. We provide the general reservation design for sporadic parallel tasks, such that any scheduling algorithm and analysis for sequential tasks with arbitrary deadlines can be used to execute the allocated reservation servers of parallel tasks. Moreover, the proposed reservation-based federated scheduling algorithms provide constant speedup factors with respect to any optimal scheduler for arbitrary-deadline DAG task sets. We demonstrate via numerical and empirical experiments that our algorithms are competitive with the state of the art.
多核系统越来越多地应用于实时系统,以满足高计算需求。为了充分利用多核处理的优势,必须有效地利用以有向无环图(DAG)为模型的任务内并行性。研究具有约束和任意期限的并行实时任务的调度问题。与该领域的先前工作相比,它推广了联邦调度,并提出了一种新的基于保留的方法。也就是说,我们提出了一种基于预留的联邦调度策略,该策略通过分配预留服务器将任意截止日期DAG任务集的调度问题简化为任意截止日期顺序任务集的调度问题。我们提供了零星并行任务的通用预留设计,使得任何具有任意截止日期的顺序任务的调度算法和分析都可以用于执行分配的并行任务预留服务器。此外,所提出的基于保留的联邦调度算法相对于任意截止日期DAG任务集的任何最优调度程序提供恒定的加速因子。我们通过数值和经验实验证明,我们的算法与最先进的技术具有竞争力。
{"title":"Reservation-Based Federated Scheduling for Parallel Real-Time Tasks","authors":"Niklas Ueter, G. V. D. Brüggen, Jian-Jia Chen, Jing Li, Kunal Agrawal","doi":"10.1109/RTSS.2018.00061","DOIUrl":"https://doi.org/10.1109/RTSS.2018.00061","url":null,"abstract":"Multicore systems are increasingly utilized in real-time systems in order to address the high computational demands. To fully exploit the advantages of multicore processing, possible intra-task parallelism modeled as a directed acyclic graph (DAG) must be utilized efficiently. This paper considers the scheduling problem for parallel real-time tasks with constrained and arbitrary deadlines. In contrast to prior work in this area, it generalizes federated scheduling and proposes a novel reservation-based approach. Namely, we propose a reservation-based federated scheduling strategy that reduces the problem of scheduling arbitrary-deadline DAG task sets to the problem of scheduling arbitrary-deadline sequential task sets by allocating reservation servers. We provide the general reservation design for sporadic parallel tasks, such that any scheduling algorithm and analysis for sequential tasks with arbitrary deadlines can be used to execute the allocated reservation servers of parallel tasks. Moreover, the proposed reservation-based federated scheduling algorithms provide constant speedup factors with respect to any optimal scheduler for arbitrary-deadline DAG task sets. We demonstrate via numerical and empirical experiments that our algorithms are competitive with the state of the art.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121942084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
期刊
2018 IEEE Real-Time Systems Symposium (RTSS)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1