首页 > 最新文献

2016 Global Summit on Computer & Information Technology (GSCIT)最新文献

英文 中文
Acoustic Features for Robust ASR in Cellular Network Applications 蜂窝网络中稳健ASR的声学特性研究
Pub Date : 2016-07-01 DOI: 10.1109/GSCIT.2016.11
D. Addou, M. Boudraa, B. Boudraa
This article handles possibilities of integrating speech technology in to robust wireless technology, allowing voice input for wireless devices. To improve the robustness of speech frontends we introduce, in this paper, a new set of feature vector which is estimated according to the impact of the proposed multidimensional acoustical features on the performance of the Mel-frequency based-advanced frontend. From the denoised acoustic frame using the wiener filter, we optimize the stream weights of multi-in a multi-stream scheme using Karhunen-Loeve Transform (KLT). The proposed frontend is shown to exhibit a stream HMM (Hidden Markov Model) by deploying a discriminative approach based in Likelihood-Ratio Maximization (LRM). Finally, this feature are adequately transformed and reduced relative error rate reduction and provides comparable recognition performance compared with the current DSR-FE (Distributed Speech Recognition FrontEnd) available in wireless communication systems.
本文讨论了将语音技术集成到健壮的无线技术中的可能性,从而允许无线设备进行语音输入。为了提高语音前端的鲁棒性,本文引入了一组新的特征向量,该特征向量是根据所提出的多维声学特征对基于mel频率的高级前端性能的影响来估计的。从使用维纳滤波器去噪的声帧出发,利用Karhunen-Loeve变换(KLT)优化多流方案的流权。通过部署基于似然比最大化(LRM)的判别方法,所提出的前端显示出流HMM(隐马尔可夫模型)。最后,对该特征进行了充分的转换,降低了相对错误率,并提供了与当前无线通信系统中可用的DSR-FE(分布式语音识别前端)相当的识别性能。
{"title":"Acoustic Features for Robust ASR in Cellular Network Applications","authors":"D. Addou, M. Boudraa, B. Boudraa","doi":"10.1109/GSCIT.2016.11","DOIUrl":"https://doi.org/10.1109/GSCIT.2016.11","url":null,"abstract":"This article handles possibilities of integrating speech technology in to robust wireless technology, allowing voice input for wireless devices. To improve the robustness of speech frontends we introduce, in this paper, a new set of feature vector which is estimated according to the impact of the proposed multidimensional acoustical features on the performance of the Mel-frequency based-advanced frontend. From the denoised acoustic frame using the wiener filter, we optimize the stream weights of multi-in a multi-stream scheme using Karhunen-Loeve Transform (KLT). The proposed frontend is shown to exhibit a stream HMM (Hidden Markov Model) by deploying a discriminative approach based in Likelihood-Ratio Maximization (LRM). Finally, this feature are adequately transformed and reduced relative error rate reduction and provides comparable recognition performance compared with the current DSR-FE (Distributed Speech Recognition FrontEnd) available in wireless communication systems.","PeriodicalId":295398,"journal":{"name":"2016 Global Summit on Computer & Information Technology (GSCIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130204482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ontological and Terminological Ressource Enrichment from Text Copora 从文本语料库中获取本体和术语资源
Pub Date : 2016-07-01 DOI: 10.1109/GSCIT.2016.18
Anis Tissaoui, Anwer Mezni
Several studies have proposed to associate a terminological or linguistic part to the ontology's, in order to a clear distinction between the terminological and conceptual component, In particular defined the Ontological and Terminological Resource (OTR). Because domain knowledge can evolve, ontology must be enriched with new knowledge. Methods and tools have been developed in order to extract and organize knowledge explicit and / or implicit, in the text. They generally use specific techniques from different fields of research, especially NLP, machine learning, text mining. However, there is not yet a method / tool that have proven effective for semiautomatic enrichment OTR from text. This paper offers an original solution based on the calculated similarity chain, external semantic resources and ontology's online to enrich OTR from texts. This work is concrétise by a tool called OntoEnrich.
一些研究建议将术语或语言部分与本体联系起来,以便明确区分术语和概念部分,特别是定义了本体论和术语资源(OTR)。因为领域知识是可以进化的,所以本体必须通过新的知识来丰富。为了提取和组织文本中显性和/或隐性的知识,已经开发了方法和工具。他们通常使用来自不同研究领域的特定技术,特别是NLP,机器学习,文本挖掘。然而,目前还没有一种方法/工具被证明可以有效地从文本中半自动充实OTR。本文提出了一种基于计算出的相似链、外部语义资源和在线本体的原始解决方案来丰富文本的OTR。这项工作是由一个叫做OntoEnrich的工具完成的。
{"title":"Ontological and Terminological Ressource Enrichment from Text Copora","authors":"Anis Tissaoui, Anwer Mezni","doi":"10.1109/GSCIT.2016.18","DOIUrl":"https://doi.org/10.1109/GSCIT.2016.18","url":null,"abstract":"Several studies have proposed to associate a terminological or linguistic part to the ontology's, in order to a clear distinction between the terminological and conceptual component, In particular defined the Ontological and Terminological Resource (OTR). Because domain knowledge can evolve, ontology must be enriched with new knowledge. Methods and tools have been developed in order to extract and organize knowledge explicit and / or implicit, in the text. They generally use specific techniques from different fields of research, especially NLP, machine learning, text mining. However, there is not yet a method / tool that have proven effective for semiautomatic enrichment OTR from text. This paper offers an original solution based on the calculated similarity chain, external semantic resources and ontology's online to enrich OTR from texts. This work is concrétise by a tool called OntoEnrich.","PeriodicalId":295398,"journal":{"name":"2016 Global Summit on Computer & Information Technology (GSCIT)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124339409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
2016 Global Summit on Computer & Information Technology (GSCIT)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1